重塑数据帧 - 更改列和行

时间:2017-11-28 21:41:33

标签: r dataframe long-integer reshape

我有一个如下所示的数据框:

enter image description here

现在我希望将这些工作站作为列,一列用于工作站1,一列用于工作站2,一个用于工作站3.

日期应该在行中,就像这样:

Date         Day        Station 1      Station 2      Station 3
2000-01-01   Day1          5              15             20
2000-01-01   Day2         4.0            8.8             11.2
2000-01-01   Day3         10              30             40
2000-02-01   Day1         10              NA             25
2000-02-01   Day2         6.4             NA             13.6
2000-02-01   Day3         20              NA             50
2000-03-01   Day1         NA              NA             30
2000-03-01   Day2         NA              NA             16.0
2000-03-01   Day3         NA              NA             60

我之前使用过reshape(df),但我不知道如何调整它以使其在这种情况下起作用。

有什么想法吗?

以下是我的testframe的代码:

x1= c("Station 1", "Station 1", "Station 2", "Station 3", "Station 3", "Station 3")
x2= c("2000-01-01", "2000-02-01", "2000-01-01", "2000-01-01", "2000-02-01", "2000-03-01")
x3= seq(5, 30, length=6)
x4= seq(4, 16, length=6)
x5= seq(10, 60, length=6) 

testframe = data.frame(Station=x1, Date=x2, Day1=x3, Day2=x4, Day3=x5) 

1 个答案:

答案 0 :(得分:4)

向Nate道歉,但这是解决这个问题的一个非常糟糕的方法。正确的“reshape2”方法可能是以下两种方法之一:

library(reshape2)
dcast(melt(testframe, id.vars = 1:2), Date + variable ~ Station)
recast(testframe, Date + variable ~ Station, id.var = c("Station", "Date"))

两者都会产生以下结果:

#         Date variable Station 1 Station 2 Station 3
# 1 2000-01-01     Day1       5.0      15.0      20.0
# 2 2000-01-01     Day2       4.0       8.8      11.2
# 3 2000-01-01     Day3      10.0      30.0      40.0
# 4 2000-02-01     Day1      10.0        NA      25.0
# 5 2000-02-01     Day2       6.4        NA      13.6
# 6 2000-02-01     Day3      20.0        NA      50.0
# 7 2000-03-01     Day1        NA        NA      30.0
# 8 2000-03-01     Day2        NA        NA      16.0
# 9 2000-03-01     Day3        NA        NA      60.0

或者,正如eipi10所建议的,你也可以使用“tidyverse”包:

library(tidyverse)
testframe %>% 
  gather(Day, value, Day1:Day3) %>% 
  spread(Station, value)