如何在Spark中

时间:2017-11-28 12:14:20

标签: scala apache-spark apache-spark-sql aggregation

我对Scala的兴趣相对较新。目前我正在尝试在每月下滑的12个月期间汇总火花中的订单数据。

以下是我的数据的简单示例,我尝试对其进行格式化,以便您可以轻松地对其进行测试

import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._


var sample = Seq(("C1","01/01/2016", 20), ("C1","02/01/2016", 5), 
 ("C1","03/01/2016", 2),  ("C1","04/01/2016", 3), ("C1","05/01/2017", 5),
 ("C1","08/01/2017", 5), ("C1","01/02/2017", 10), ("C1","01/02/2017", 10),  
 ("C1","01/03/2017", 10)).toDF("id","order_date", "orders")

sample = sample.withColumn("order_date",
to_date(unix_timestamp($"order_date", "dd/MM/yyyy").cast("timestamp")))

sample.show 
 +---+----------+------+
 | id|order_date|orders|
 +---+----------+------+
 | C1|2016-01-01|    20|
 | C1|2016-01-02|     5|
 | C1|2016-01-03|     2|
 | C1|2016-01-04|     3|
 | C1|2017-01-05|     5|
 | C1|2017-01-08|     5|
 | C1|2017-02-01|    10|
 | C1|2017-02-01|    10|
 | C1|2017-03-01|    10|
 +---+----------+------+
强加于我的结果如下。

id      period_start    period_end  rolling
C1      2015-01-01      2016-01-01  30
C1      2016-01-01      2017-01-01  40
C1      2016-02-01      2017-02-01  30
C1      2016-03-01      2017-03-01  40

到目前为止我试图做的事情

我将每个客户的日期折叠到了该月的第一天

  

(e.i。2016-01- [1..31]>> 2016-01-01)

import org.joda.time._

val collapse_month = (month:Integer, year:Integer ) => {
   var  dt = new DateTime().withYear(year)
                        .withMonthOfYear(month)
                        .withDayOfMonth(1)
   dt.toString("yyyy-MM-dd")
 }

val collapse_month_udf = udf(collapse_month)


sample = sample.withColumn("period_end",
           collapse_month_udf(
           month(col("order_date")),
           year(col("order_date"))
           ).as("date"))

sample.groupBy($"id",  $"period_end")
              .agg(sum($"orders").as("orders"))
              .orderBy("period_end").show
 +---+----------+------+
 | id|period_end|orders|
 +---+----------+------+
 | C1|2016-01-01|    30|
 | C1|2017-01-01|    10|
 | C1|2017-02-01|    20|
 | C1|2017-03-01|    10|
 +---+----------+------+

我尝试了提供的window功能,但我无法使用一个选项滑动12个月。

我真的不确定从这一点开始的最佳方法是什么,考虑到我需要处理多少数据,这不会花费5个小时。

任何帮助都将不胜感激。

1 个答案:

答案 0 :(得分:6)

  

尝试了提供的窗口功能,但我无法使用一个选项滑动12个月。

您仍然可以使用window更长的间隔,但所有参数都必须以天或周表示:

window($"order_date", "365 days", "28 days")

不幸的是window这不会尊重月份或年份的界限,所以它不会对你有用。

就个人而言,我会先汇总数据:

val byMonth = sample
  .groupBy($"id", trunc($"order_date", "month").alias("order_month"))
  .agg(sum($"orders").alias("orders"))
+---+-----------+-----------+                                                   
| id|order_month|sum(orders)|
+---+-----------+-----------+
| C1| 2017-01-01|         10|
| C1| 2016-01-01|         30|
| C1| 2017-02-01|         20|
| C1| 2017-03-01|         10|
+---+-----------+-----------+

创建参考日期范围:

import java.time.temporal.ChronoUnit

val Row(start: java.sql.Date, end: java.sql.Date) = byMonth
  .select(min($"order_month"), max($"order_month"))
  .first

val months = (0L to ChronoUnit.MONTHS.between(
    start.toLocalDate, end.toLocalDate))
  .map(i => java.sql.Date.valueOf(start.toLocalDate.plusMonths(i)))
  .toDF("order_month")

并结合独特的ID:

val ref = byMonth.select($"id").distinct.crossJoin(months)

并与来源联系:

val expanded = ref.join(byMonth, Seq("id", "order_month"), "leftouter")
+---+-----------+------+ 
| id|order_month|orders|
+---+-----------+------+
| C1| 2016-01-01|    30|
| C1| 2016-02-01|  null|
| C1| 2016-03-01|  null|
| C1| 2016-04-01|  null|
| C1| 2016-05-01|  null|
| C1| 2016-06-01|  null|
| C1| 2016-07-01|  null|
| C1| 2016-08-01|  null|
| C1| 2016-09-01|  null|
| C1| 2016-10-01|  null|
| C1| 2016-11-01|  null|
| C1| 2016-12-01|  null|
| C1| 2017-01-01|    10|
| C1| 2017-02-01|    20|
| C1| 2017-03-01|    10|
+---+-----------+------+

使用这样的数据准备你可以使用窗口函数:

import org.apache.spark.sql.expressions.Window

val w = Window.partitionBy($"id")
     .orderBy($"order_month")
    .rowsBetween(-12, Window.currentRow)

expanded.withColumn("rolling", sum("orders").over(w))
  .na.drop(Seq("orders"))
  .select(
      $"order_month" - expr("INTERVAL 12 MONTHS") as "period_start",
      $"order_month" as "period_end",
      $"rolling")
+------------+----------+-------+
|period_start|period_end|rolling|
+------------+----------+-------+
|  2015-01-01|2016-01-01|     30|
|  2016-01-01|2017-01-01|     40|
|  2016-02-01|2017-02-01|     30|
|  2016-03-01|2017-03-01|     40|
+------------+----------+-------+

请注意,这是一项非常昂贵的操作,需要至少两次洗牌:

== Physical Plan ==
*Project [cast(cast(order_month#104 as timestamp) - interval 1 years as date) AS period_start#1387, order_month#104 AS period_end#1388, rolling#1375L]
+- *Filter AtLeastNNulls(n, orders#55L)
   +- Window [sum(orders#55L) windowspecdefinition(id#7, order_month#104 ASC NULLS FIRST, ROWS BETWEEN 12 PRECEDING AND CURRENT ROW) AS rolling#1375L], [id#7], [order_month#104 ASC NULLS FIRST]
      +- *Sort [id#7 ASC NULLS FIRST, order_month#104 ASC NULLS FIRST], false, 0
         +- Exchange hashpartitioning(id#7, 200)
            +- *Project [id#7, order_month#104, orders#55L]
               +- *BroadcastHashJoin [id#7, order_month#104], [id#181, order_month#49], LeftOuter, BuildRight
                  :- BroadcastNestedLoopJoin BuildRight, Cross
                  :  :- *HashAggregate(keys=[id#7], functions=[])
                  :  :  +- Exchange hashpartitioning(id#7, 200)
                  :  :     +- *HashAggregate(keys=[id#7], functions=[])
                  :  :        +- *HashAggregate(keys=[id#7, trunc(order_date#14, month)#1394], functions=[])
                  :  :           +- Exchange hashpartitioning(id#7, trunc(order_date#14, month)#1394, 200)
                  :  :              +- *HashAggregate(keys=[id#7, trunc(order_date#14, month) AS trunc(order_date#14, month)#1394], functions=[])
                  :  :                 +- LocalTableScan [id#7, order_date#14]
                  :  +- BroadcastExchange IdentityBroadcastMode
                  :     +- LocalTableScan [order_month#104]
                  +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true], input[1, date, true]))
                     +- *HashAggregate(keys=[id#181, trunc(order_date#14, month)#1395], functions=[sum(cast(orders#183 as bigint))])
                        +- Exchange hashpartitioning(id#181, trunc(order_date#14, month)#1395, 200)
                           +- *HashAggregate(keys=[id#181, trunc(order_date#14, month) AS trunc(order_date#14, month)#1395], functions=[partial_sum(cast(orders#183 as bigint))])
                              +- LocalTableScan [id#181, order_date#14, orders#183]

也可以使用rangeBetween框架来表达这一点,但您必须先对数据进行编码:

val encoded = byMonth
  .withColumn("order_month_offset",
      // Choose "zero" date appropriate in your scenario
      months_between($"order_month", to_date(lit("1970-01-01"))))


val w = Window.partitionBy($"id")
  .orderBy($"order_month_offset")
  .rangeBetween(-12, Window.currentRow)

encoded.withColumn("rolling", sum($"orders").over(w))
+---+-----------+------+------------------+-------+                             
| id|order_month|orders|order_month_offset|rolling|
+---+-----------+------+------------------+-------+
| C1| 2016-01-01|    30|             552.0|     30|
| C1| 2017-01-01|    10|             564.0|     40|
| C1| 2017-02-01|    20|             565.0|     30|
| C1| 2017-03-01|    10|             566.0|     40|
+---+-----------+------+------------------+-------+

这将使参考的连接过时并简化执行计划。