AttributeError:' CrossEntropyLoss'对象没有属性'落后'

时间:2017-11-25 17:15:07

标签: python neural-network deep-learning conv-neural-network pytorch

我正在尝试在CIFAR10数据集上训练一个非常基本的CNN并收到以下错误: AttributeError:' CrossEntropyLoss'对象没有属性'向后'

criterion =nn.CrossEntropyLoss
optimizer=optim.SGD(net.parameters(),lr=0.001,momentum=0.9)

for epoch in range(2):  # loop over the dataset multiple times
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            # get the inputs
            inputs, labels = data
             # wrap them in Variable
            inputs, labels = Variable(inputs), Variable(labels)

            # zero the parameter gradients
            optimizer.zero_grad()
            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # print statistics
            running_loss += loss.data[0]
            if i % 2000 == 1999:    # print every 2000 mini-batches
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0

2 个答案:

答案 0 :(得分:0)

问题已解决。我的错,我错过了括号

criterion =nn.CrossEntropyLoss()

答案 1 :(得分:0)

通常,如果您使用 l = loss(net(X), y),那么您会调用 l.backward() 而不是 loss.backward(),这是我的错误。

#defining loss
loss = nn.CrossEntropyLoss()
...
#inside training loop
l = loss(net(X), y)
...
# for backpropogation
l.backward()