我有一组线(形式为y = mx + b的线性函数)(其中120个!),如果我将它们全部绘制出来,那么它们就会对R ^ 2平面进行分区。这些线不一定要通过原点。
查找由一组此类行创建的所有分区的最有效方法是什么?就个人而言,我很难想出任何方式,更不用说有效率了。为了更清楚,我包括以下只有4行的图像:
分区的示例是set {(x,y)|y <= -30x+28 && 5x+3 <= y <= 60x+2}
,它是由第一象限中的红色,黄色和绿色线创建的分区。另一个例子是{(x,y)|5x+3 <= y <= -30x+28}
,它是第一象限中由蓝色,红色和绿色线界定的三角形。
非分区的一个示例是{(x,y)|5x+3 <= y <= -30x+28 && 90x+7 <= y}
,它是由上面的绿线和下面的蓝线界定的集合。这不是分区,因为其中包含多个分区(例如,上面的第二个集合),或者重叠它。但是,集合{(x,y)|y <= -30x+28 && 5x+3 <= y <= 60x+2},{(x,y)| -30x+28<= y && 60x+2 <= y <= 90x+7}...
将是一个分区。
所需的输出将是此类集的完整列表:
y <= 5x+3 && y >= 90x+7 && y<= -30x+28
等等。当然,他们不必用这种符号表示。
我不确定如何解决这个问题,因此,遗憾的是,它无法提供我尝试过的方法。理想情况下,我想在R,Python,Mathematica或MATLAB中执行此操作,但我现在可以选择任何选项。
编辑:由于符号似乎存在问题,我会稍微澄清一下。简单地获得点上的条件列表就足够了,这样满足该条件的所有点都将精确地定义分区。例如,一长串交叉点就可以了:actions = new Actions(webDriver);
IWebElement sourceelement = webDriver.FindElement(By.XPath("//*[@id=\"resizable\"]/div[3]"));
actions.ClickAndHold(sourceelement).MoveByOffset(400, 400).Release();
actions.Perform();
是定义分区的完美输出。当然,期望的输出是这种分区的完整列表(如上所定义)。
答案 0 :(得分:4)
找到分区的数量遵循这个公式(当没有3条或更多条线在同一点相交时 - 这个假设贯穿这篇文章):
num_partitions = (n_lines * (n_lines + 1) / 2 ) + 1
所需的输出将是此类集的完整列表:
{(x,y)|y <= -30x+28 && 5x+3 <= y <= 60x+2}, {(x,y)| -30x+28<= y && 60x+2 <= y <= 90x+7}...
等......它们不必用这种符号表示 当然。
以下是我对信封的尝试。如您所见,可以根据它们与每条线的相对位置来识别编号区域
有5个空集,如果行排序发生变化则不一样
用线 对平面上的一组点进行分区可能会更容易,试图确定哪个点属于哪个点;在这种情况下,探索2^n
潜在分区并返回其内容将很容易。 (比试图找到一个好的符号来识别抽象集更容易)
这并不能完全回答你的问题,但对于能够/愿意进一步推动这一问题的人来说,这可能是一个很好的说明点。
以下是关于partitioning a set of points with two lines in the plane.的说明
这是一个不同的问题,但它的一些方法可能有用。
识别由线段形成的多边形,计算凸包,确定一个点是否在该船体中。
答案 1 :(得分:3)
这是Mathematica中的解决方案。该方法包括找到线交叉点,线段和分区,同时跟踪点连接的线。
y[1] = 5 x + 3;
y[2] = 90 x + 7;
y[3] = -30 x + 28;
y[4] = 60 x + 2;
findpoints[n_] := Module[{},
xp = DeleteCases[{{First[#1], First[#2]},
Solve[Last[#1] == Last[#2], x]} & @@@
DeleteCases[
Tuples[Array[{#, y[#]} &, n], 2],
{{x_, _}, {x_, _}}], {_, {}}];
yp = y[#[[1, 1]]] /. #[[2, 1]] & /@ xp;
MapThread[{#1, {#2, #3}} &,
{xp[[All, 1]], xp[[All, 2, 1, 1, 2]], yp}]]
xyp = findpoints[4];
{xmin, xmax} = Through[{Min, Max}@
xyp[[All, 2, 1]]] + {-0.7, 0.7};
outers = Flatten[Array[Function[n,
MapThread[List[{{n, 0}, {##}}] &,
{{xmin, xmax}, y[n] /.
List /@ Thread[x -> {xmin, xmax}]}]], 4], 2];
xyp = Join[outers, xyp];
findlines[p_] := Module[{},
pt = DeleteCases[
Cases[xyp, {{p[[1, 1]], _}, _}], p];
n = First@Cases[pt,
{_, First@Nearest[Last /@ pt, Last[p]]}];
{{First[p], First[n]}, {Last[p], Last[n]}}]
lines = Map[findlines, xyp];
(* boundary lines *)
{ymin, ymax} = Through[{Min, Max}@outers[[All, 2, 2]]];
{lbtm, rbtm, ltop, rtop} = {{xmin, ymin},
{xmax, ymin}, {xmin, ymax}, {xmax, ymax}};
xminlines = Partition[Union@Join[{ymin, ymax},
Cases[xyp, {_, {xmin, _}}][[All, 2, 2]]], 2, 1] /.
x_Real :> {xmin, x};
xmaxlines = Partition[Union@Join[{ymin, ymax},
Cases[xyp, {_, {xmax, _}}][[All, 2, 2]]], 2, 1] /.
x_Real :> {xmax, x};
lines2 = Join[Last /@ lines, xminlines, xmaxlines,
{{lbtm, rbtm}}, {{ltop, rtop}}];
ListLinePlot[lines2]
(* add vertex points *)
xyp2 = Join[xyp, {
{{SortBy[Cases[outers, {_, {xmin, _}}],
Last][[-1, 1, 1]], -1}, ltop},
{{SortBy[Cases[outers, {_, {xmax, _}}],
Last][[-1, 1, 1]], -1}, rtop},
{{SortBy[Cases[outers, {_, {xmin, _}}],
Last][[1, 1, 1]], -1}, lbtm},
{{SortBy[Cases[outers, {_, {xmax, _}}],
Last][[1, 1, 1]], -1}, rbtm}}];
anglecalc[u_, v_] := Mod[(ArcTan @@ u) - (ArcTan @@ v), 2 π]
getlineangles[] := Module[{},
(* find the angles from current line
to all the linked lines *)
angle = Map[
anglecalc[{c, d} - {g, h}, # - {g, h}] &,
union = DeleteCases[Union@Join[
Last /@ Cases[lines2, {{g, h}, _}],
First /@ Cases[lines2, {_, {g, h}}]],
{c, d}]];
Sort[Transpose[{N@angle, union}]]]
getpolygon[pt_, dir_] := Module[{},
Clear[p];
p[n = 1] = {{a, b}, {c, d}} = pt;
(* find the angles from vector (0, -1) or (0, 1)
to all the linked lines *)
angle = Map[anglecalc[If[dir == 1, {0, -1}, {0, 1}], # - {c, d}] &,
union = Union@Join[
Last /@ Cases[lines2, {{c, d}, _}],
First /@ Cases[lines2, {_, {c, d}}]]];
lineangles = Sort[Transpose[{N@angle, union}]];
(* next point *)
p[++n] = {{e, f}, {g, h}} = First@
Cases[xyp2, {_, lineangles[[1, 2]]}];
While[Last[p[n]] != Last[p[1]],
lineangles = getlineangles[];
(* reset first point *)
{{a, b}, {c, d}} = {{e, f}, {g, h}};
(* next point *)
p[++n] = {{e, f}, {g, h}} = First@
Cases[xyp2, {_, lineangles[[1, 2]]}]];
Array[p, n]]
len = Length[xyp];
polygons = Join[Array[(poly[#] = getpolygon[xyp[[#]], 1]) &, len],
Array[(poly[# + len] = getpolygon[xyp[[#]], 2]) &, len]];
graphics = DeleteDuplicates /@ Array[Last /@ poly[#] &, 2 len];
sortedgraphics = Sort /@ graphics;
positions = Map[Position[sortedgraphics, #] &,
DeleteDuplicates[sortedgraphics]][[All, 1, 1]];
unique = poly /@ positions;
poly2 = unique[[All, All, 2]];
poly2 = Delete[poly2,
Array[If[Length[Intersection[poly2[[#]],
Last /@ Take[xyp2, -4]]] == 4, {#}, Nothing] &,
Length[poly2]]];
len2 = Length[poly2];
poly3 = Polygon /@ Rest /@ poly2;
Array[(centroid[#] = RegionCentroid[poly3[[#]]]) &, len2];
Show[Graphics[Array[{ColorData[24][#],
poly3[[#]]} &, len2], AspectRatio -> 1/GoldenRatio],
Graphics[Array[Text[#, centroid[#]] &, len2]]]
unique2 = Extract[unique,
Flatten[Position[unique[[All, All, 2]], #] & /@ poly2, 1]];
makerelations[oneconnection_, areanumber_] := Module[{i},
If[Intersection @@ oneconnection == {} ||
(i = First[Intersection @@ oneconnection]) < 1,
Nothing,
centroidx = First[centroid[areanumber]];
linepos = y[i] /. x -> centroidx;
relation = If[linepos < Last[centroid[areanumber]],
" >= ", " < "];
string = StringJoin["y", relation, ToString[y[i]]]]]
findrelations[n_] := Module[{},
areanumber = n;
onearea = unique2[[areanumber]];
connections = Partition[First /@ onearea, 2, 1];
strings = DeleteDuplicates@
Map[makerelations[#, areanumber] &, connections];
StringJoin["Area ", ToString[areanumber],
If[areanumber > 9, ": ", ": "],
StringRiffle[strings, " &&\n "]]]
Show[Plot[Evaluate@Array[y, 4], {x, -1, 1.5},
PlotLegends -> "Expressions", Axes -> None],
Graphics[Array[Text[#, centroid[#]] &, len2]]]
Column@Array[findrelations, len2]
Area 1: y >= 28 - 30 x && y < 3 + 5 x Area 2: y >= 2 + 60 x && y >= 28 - 30 x && y < 7 + 90 x Area 3: y < 28 - 30 x && y < 7 + 90 x && y < 2 + 60 x && y < 3 + 5 x Area 4: y >= 3 + 5 x && y >= 28 - 30 x && y < 2 + 60 x Area 5: y < 3 + 5 x && y >= 2 + 60 x && y < 7 + 90 x Area 6: y < 28 - 30 x && y >= 2 + 60 x && y >= 3 + 5 x && y < 7 + 90 x Area 7: y < 28 - 30 x && y >= 3 + 5 x && y < 2 + 60 x Area 8: y < 28 - 30 x && y >= 7 + 90 x && y >= 3 + 5 x Area 9: y < 2 + 60 x && y >= 7 + 90 x Area 10: y >= 28 - 30 x && y >= 7 + 90 x Area 11: y < 3 + 5 x && y >= 7 + 90 x && y >= 2 + 60 x
答案 2 :(得分:2)
完整的Matlab解决方案。 120行7021分区,0.4秒原始计算(绘图+2秒)。
最终
clear
tic
%rng(15) % fix rng for debug
NLines=9;
DRAW_FINAL_POLY= true==true ; %false true
DRAW_FINALTEXT= true==true ; %false true
DRAW_LINES= false==true; %false true
DRAW_DEBUG= false==true; %false true
% part a - generate lines
NORM_EPS=1e-10;
Lines=10*(rand(NLines,4)-0.5); %(x1,y1,x2,y2)
Color=rand(NLines,3);
Lines(1,:)=[-10,0,+10,0];% x axis if we want to add asix as lines
Lines(2,:)=[0,-10,0,+10];% y axis
Color(1,:)=[1,0,0];% x axis red
Color(2,:)=[0,1,0];% y axis green
Color(3,:)=[0,0,1];% third blue
AllPairs=sortrows(combnk(1:NLines,2));
NPairs=size(AllPairs,1);
[px,py,isok,d] = LineIntersection(Lines(AllPairs(:,1),:) , Lines(AllPairs(:,2),:));
% draw lines and intersections
figure(7); cla; ax=gca;axis(ax,'auto');
if DRAW_LINES
for iline=1:size(Lines,1)
line(ax,Lines(iline,[1 3]),Lines(iline,[2 4]),'LineWidth',2','Color',Color(iline,:)); %draw partial line defined by points x1y1x2y2
end
for i=1:NPairs %extraploate line to intersection point
iline1=AllPairs(i,1);
iline2=AllPairs(i,2);
line(ax,[Lines(iline1,[1]),px(i)],[Lines(iline1,[2]),py(i)],'LineWidth',2','Color',Color(iline1,:));
line(ax,[Lines(iline2,[1]),px(i)],[Lines(iline2,[2]),py(i)],'LineWidth',2','Color',Color(iline2,:));
end
line(ax,px,py,'LineStyle','none','Marker','*','MarkerSize',8,'Color','g');%draw intersection points
for i=1:NPairs
text(px(i)+0.2,py(i)+0.2,sprintf('%d',i),'FontSize',14,'Color','c')
end
end
% part b - find regions
% 1 for each line sort all its intersections
SortIntr=cell(1,NLines); %(if no parallel lines than NintrsctnsPerline = NLines-1)
IpairiIdx1=cell(1,NLines);
IpairiIdx2=cell(1,NLines);
IpairiIdxI=cell(1,NLines);
for iline=1:NLines
[idx1,idx2]=find(AllPairs==iline);
intr=[px(idx1),py(idx1)];
[~, Isortedintr]=sortrows(intr.*[1,1]); %sort by increaing x y. (prepare clockwise travers)
SortIntr{iline}=intr(Isortedintr,:);
IpairiIdx1{iline}=idx1(Isortedintr);
IpairiIdx2{iline}=3-idx2(Isortedintr); %keep indexes of second line
IpairiIdxI{iline}=Isortedintr;
end
% 2 traverse from every point and find next closest intersctionn
% we go clockwise x+x-y
PointsInPartition={};
SolIndexInPartition={};
LineIndexInPartition={};
Line4PointsInPartition={};
VisitedSequence=false(NPairs,NPairs); %skip same sequence
count_added=0; count_skipped=0;
for iline=1:NLines
for ipoint_idx=1:length(SortIntr{iline})-1 %cant start from last point in line
ipoint=SortIntr{iline}(ipoint_idx,:);
if DRAW_DEBUG
delete(findall(ax,'Tag','tmppoint'));
line(ax,ipoint(1),ipoint(2),'LineStyle','none','Marker','O','MarkerSize',12,'Color','r','tag','tmppoint');%draw intersection points
end
current_line=iline;
isol_idx=IpairiIdx1{current_line}(ipoint_idx);
current_p_idx=ipoint_idx;
current_l_next_p_idx=current_p_idx+1;
next_line=AllPairs(IpairiIdx1{current_line}(current_l_next_p_idx), IpairiIdx2{current_line}(current_l_next_p_idx));
% next_point_idx = find(IpairiIdx1{current_line}(next_point_idx)==IpairiIdx1{next_line});
sol_idx_list=[isol_idx];
% if ismember(isol_idx,[7,8,12]),keyboard;end
point_list=[ipoint];
line_list=[iline];
while next_line~=iline
if DRAW_DEBUG
delete(findall(ax,'Tag','tmpline'));
line(ax,Lines(current_line,[1 3]),Lines(current_line,[2 4]),'LineWidth',4','Color',[ 0,0,0 ],'Tag','tmpline');
line(ax,Lines(next_line,[1 3]),Lines(next_line,[2 4]),'LineWidth',4','Color',[ 1,1,1 ],'Tag','tmpline');
end
current_sol_idx=IpairiIdx1{current_line}(current_l_next_p_idx);
current_p_idx = find(IpairiIdx1{next_line}==current_sol_idx);
current_line=next_line;
current_point=SortIntr{current_line}(current_p_idx,:);
current_nrm=norm(current_point-ipoint);
current_o=atan2d(-current_point(2)+ipoint(2),current_point(1)-ipoint(1));
sol_idx_list(end+1)=current_sol_idx; %#ok<SAGROW>
point_list(end+1,:)=current_point; %#ok<SAGROW>
line_list(end+1)=current_line;
if DRAW_DEBUG,line(ax,current_point(1),current_point(2),'LineStyle','none','Marker','O','MarkerSize',12,'Color','m','tag','tmppoint');end %draw intersection points
%select between two options. next clockwise point is the one with higher angle
if current_p_idx+1<=length(SortIntr{current_line}) && current_p_idx-1>0
next_point_1=SortIntr{current_line}(current_p_idx+1,:);
next_point_2=SortIntr{current_line}(current_p_idx-1,:);
if norm(next_point_1-ipoint)<NORM_EPS
current_l_next_p_idx=current_p_idx+1;
elseif norm(next_point_2-ipoint)<NORM_EPS
current_l_next_p_idx=current_p_idx-1;
else
o1=atan2d(-next_point_1(2)+ipoint(2),next_point_1(1)-ipoint(1));
o2=atan2d(-next_point_2(2)+ipoint(2),next_point_2(1)-ipoint(1));
if o1>o2
current_l_next_p_idx=current_p_idx+1;
else
current_l_next_p_idx=current_p_idx-1;
end
end
elseif current_p_idx-1>0
current_l_next_p_idx=current_p_idx-1;
else
current_l_next_p_idx=current_p_idx+1;
end
next_p=SortIntr{current_line}(current_l_next_p_idx,:);
next_o=atan2d(-next_p(2)+ipoint(2),next_p(1)-ipoint(1));
next_nrm=norm(next_p-ipoint);
if DRAW_DEBUG,disp([current_nrm,next_nrm,current_o,next_o]);end
next_line=AllPairs(IpairiIdx1{current_line}(current_l_next_p_idx), IpairiIdx2{current_line}(current_l_next_p_idx));
next_sol_idx=IpairiIdx1{current_line}(current_l_next_p_idx);
if VisitedSequence(current_sol_idx,next_sol_idx)
next_line=-2;
if DRAW_DEBUG,disp('seq visited');end
break;
end
if next_nrm>NORM_EPS && next_o<current_o || next_o-current_o>180
next_line=-2;
if DRAW_DEBUG,disp('next_o<current_o');end
break; %non clockwise
end
assert(next_nrm<NORM_EPS && next_line==iline || next_nrm>=NORM_EPS && next_line~=iline);
end
if next_line==iline
sol_idx_list(end+1)=next_sol_idx; %#ok<SAGROW>
point_list(end+1,:)=next_p; %#ok<SAGROW>
PointsInPartition{end+1}=point_list; %#ok<SAGROW>
SolIndexInPartition{end+1}=sol_idx_list; %#ok<SAGROW>
%Line4PointsInPartition{end+1}=(Lines(AllPairs(sol_idx_list,1),:), [1; 0])+kron(Lines(AllPairs(sol_idx_list,2),:), [0; 1]);%#ok<SAGROW>
Line4PointsInPartition{end+1}=Lines(line_list,:);%#ok<SAGROW>
for i=1:length(sol_idx_list)-1
VisitedSequence(sol_idx_list(i),sol_idx_list(i+1))=true;
end
count_added=count_added+1;
else
count_skipped=count_skipped+1;
end
if DRAW_DEBUG, disp([next_line==iline, count_added,count_skipped]);end
end
end
% draw all segments
if DRAW_DEBUG %clear debug
delete(findall(ax,'Tag','tmppoint'));
delete(findall(ax,'Tag','tmpline'));
end
NPartition=length(PointsInPartition);
s=sprintf('Lines=%d, Segments=%d, RunTime=%1.2fsec',NLines,NPartition,toc);
title(ax,s);
fprintf([s,newline]);
if DRAW_FINAL_POLY
hold(ax,'on');
for i=1:NPartition
plist=PointsInPartition{i};
patch(plist(:,1),plist(:,2),i,'FaceAlpha',.3)
[cx,cy]=ploygon_centroid(plist(:,1),plist(:,2));
if(DRAW_FINALTEXT),text(cx,cy,sprintf('%d',i),'FontSize',12,'Color','k');end
end
end
function [px,py,isok,d] = LineIntersection(Line1, Line2)
%Line1=[x1,y1,x2,y2] Line2=[x3,y3,x4,y4]
x1=Line1(:,1); y1=Line1(:,2); x2=Line1(:,3); y2=Line1(:,4);
x3=Line2(:,1); y3=Line2(:,2); x4=Line2(:,3); y4=Line2(:,4);
d=(x1-x2).*(y3-y4)-(y1-y2).*(x3-x4);%determinant
px0=(x1.*y2-y1.*x2).*(x3-x4)-(x1-x2).*(x3.*y4-y3.*x4);
py0=(x1.*y2-y1.*x2).*(y3-y4)-(y1-y2).*(x3.*y4-y3.*x4);
isok=abs(d)>1e-6;
px=px0./d;
py=py0./d;
end
function [xc,yc] = ploygon_centroid(x,y)
xs = circshift(x,-1);
ys = circshift(y,-1);
area = 0.5*sum (x.*ys-xs.*y);
xc = sum((x.*ys-xs.*y).*(x+xs))/(6*area);
yc = sum((x.*ys-xs.*y).*(y+ys))/(6*area);
end
答案 3 :(得分:1)
编辑使用itertools的新解决方案。以下旧解决方案。
使用python包itertools
,我相信这个解决方案比原始解决方案更快。然而,它仍然非常缓慢,并且超过大约20-ah线是不可行的。对于120行,这些都不会终止。
import itertools
strings = ["<=", ">="]
fxs = ["5x + 3", "-60x + 7", ...]
parts = []
if __name__ == "__main__":
print(len(fxs))
out = itertools.product(strings, repeat=len(fxs))
for i in out:
curpart = ""
for j in range(len(i)):
print(curpart)
if j != len(i):
curpart = curpart + "y " + i[j] + fxs[j] + " && "
else:
curpart = curpart + "y " + i[j] + fxs[j]
parts.append(curpart)
print(parts)
旧解决方案
这是最终为我工作的东西,在python:
fxs = [list of functions as strings, ex: "5x+3","6x+4"... etc.]
parts = []
if __name__ == "__main__":
for f in fxs:
fhalf = "y >= " + f
shalf = "y <= " + f
if len(parts) == 0:
parts.append(fhalf)
parts.append(shalf)
else:
parts1 = [s + " && " + fhalf for s in parts]
parts2 = [s + " && " + shalf for s in parts]
parts = parts1 + parts2
print(parts)
对于上面的例子,这输出:
['y >= 5x+3 && y >= 90x+7 && y >= -30x+28 && y >= 60x+2', 'y <= 5x+3 && y >= 90x+7 && y >= -30x+28 && y >= 60x+2', 'y >= 5x+3 && y <= 90x+7 && y >= -30x+28 && y >= 60x+2', 'y <= 5x+3 && y <= 90x+7 && y >= -30x+28 && y >= 60x+2', 'y >= 5x+3 && y >= 90x+7 && y <= -30x+28 && y >= 60x+2', 'y <= 5x+3 && y >= 90x+7 && y <= -30x+28 && y >= 60x+2', 'y >= 5x+3 && y <= 90x+7 && y <= -30x+28 && y >= 60x+2', 'y <= 5x+3 && y <= 90x+7 && y <= -30x+28 && y >= 60x+2', 'y >= 5x+3 && y >= 90x+7 && y >= -30x+28 && y <= 60x+2', 'y <= 5x+3 && y >= 90x+7 && y >= -30x+28 && y <= 60x+2', 'y >= 5x+3 && y <= 90x+7 && y >= -30x+28 && y <= 60x+2', 'y <= 5x+3 && y <= 90x+7 && y >= -30x+28 && y <= 60x+2', 'y >= 5x+3 && y >= 90x+7 && y <= -30x+28 && y <= 60x+2', 'y <= 5x+3 && y >= 90x+7 && y <= -30x+28 && y <= 60x+2', 'y >= 5x+3 && y <= 90x+7 && y <= -30x+28 && y <= 60x+2', 'y <= 5x+3 && y <= 90x+7 && y <= -30x+28 && y <= 60x+2']
代码非常简单,输出完全符合要求。
这个想法基本上是每条线将平面分成两半,所以循环(迭代在一组线上)与每一半已找到的每个分区相交,并将两个新分区添加到集合中,同时删除原始的交叉分区。结果并不总是给出最简单的条件(某些条件可能是多余的),但它们确实给出了每个分区的完整描述。
虽然这个解决方案可行,但有120行,但速度很慢。我有兴趣看看是否有更有效的方法来实现这一点,使用这种方法或其他方式。
答案 4 :(得分:0)
到目前为止建议的另一种方法是使用三角形。
从一组三角形(可能包含无限远点)开始,其联合是覆盖整个平面的多边形。例如,您可以开始将四个三角形分开,其中前两行作为算法的输入,或者采用由原点O形成的三个三角形,即OX轴的正侧,以及两个半与OX形成120度和240度的线,也从O开始。
现在,对于作为输入给出的每一行,你去寻找它所穿过的三角形,并且对于每一行,你在与该线的交点处切割它并将其替换为三个(或两个在退化情况下)新三角形覆盖同一地区。然后你必须找到那些旧的相交三角形所在的多边形,然后用两个多边形替换每一个多边形,这样就可以根据它们所在线的一边分割它所包含的三角形。
使用三角形的好处在于它使计算变得更加容易,并且您可以在某些索引数据结构(例如kd树)中推送,这样可以更快地计算哪些多边形被某条线切割,并且您可以以复杂度O(NlogN)的算法结束,其中N是形成平面分区的多边形数。