我想将两种类型的数据的内核密度估计添加到ggplot。如果我使用以下代码,它仅显示第二个因子级别的内核密度估计值。如何获得两个因子水平(最好是不同颜色)的核密度估计值?
ggplot(mtcars, aes(x = disp, y=mpg, color=factor(vs))) +
theme_bw() +
geom_point(size=.5) +
geom_smooth(method = 'loess', se = FALSE) +
stat_density_2d(geom = "raster", aes(fill = ..density.., alpha = ..density..), contour = FALSE) +
scale_alpha(range = c(0,1)) +
guides(alpha=FALSE)
答案 0 :(得分:2)
一种方法是使用两个stat_density_2d
图层和数据子集并手动着色。这不完全是你想要的,但通过调整它可以是坚实的:
ggplot(mtcars, aes(x = disp, y=mpg, color=factor(vs))) +
theme_bw() +
geom_point(size=.5) +
geom_smooth(method = 'loess', se = FALSE) +
stat_density_2d(data = subset(mtcars, vs == 0), geom = "raster", aes(alpha = ..density..), fill = "#F8766D" , contour = FALSE) +
stat_density_2d(data = subset(mtcars, vs == 1), geom = "raster", aes(alpha = ..density..), fill = "#00BFC4" , contour = FALSE) +
scale_alpha(range = c(0, 1))
答案 1 :(得分:2)
这可能会做你想要的: ```
ggplot(mtcars, aes(x = disp, y=mpg, color=factor(vs))) +
theme_bw() +
geom_point(size=.5) +
geom_smooth(method = 'loess', se = FALSE) +
stat_density_2d(data = subset(mtcars, vs==1), geom = "raster", fill='blue', aes(fill = ..density.., alpha = ..density..), contour = FALSE) +
scale_alpha(range = c(0,0.8)) +
stat_density_2d(data = subset(mtcars, vs==0), geom = "raster", fill='red', aes(fill = ..density.., alpha = ..density..), contour = FALSE) +
guides(alpha=FALSE)
```
答案 2 :(得分:1)
我在this post中发现的另一个可能的解决方案是在geom="tile"
调用而不是stat_density2d()
中使用geom="raster"
。
ggplot(mtcars, aes(x = disp, y=mpg, color=factor(vs))) +
theme_bw() +
geom_point(size=.5) +
geom_smooth(method = 'loess', se = FALSE) +
stat_density_2d(geom = "tile", aes(fill = factor(vs), alpha = ..density..), contour = FALSE, linetype=0) +
scale_alpha(range = c(0,1))