我目前正在训练分类器的模型。昨天我发现如果你也测试创建的分类模型会更准确。我尝试在互联网上搜索如何测试模型:testing openNLP model。但是我无法让它发挥作用。我认为原因是因为我使用OpenNLP版本1.83而不是1.5。谁能解释一下如何在这个版本的OpenNLP中正确测试我的模型?
提前致谢。
以下是我训练模型的方式:
public static DoccatModel trainClassifier() throws IOException
{
// read the training data
final int iterations = 100;
InputStreamFactory dataIn = new MarkableFileInputStreamFactory(new File("src/main/resources/trainingSets/trainingssetTest.txt"));
ObjectStream<String> lineStream = new PlainTextByLineStream(dataIn, "UTF-8");
ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
// define the training parameters
TrainingParameters params = new TrainingParameters();
params.put(TrainingParameters.ITERATIONS_PARAM, iterations+"");
params.put(TrainingParameters.CUTOFF_PARAM, 0+"");
params.put(AbstractTrainer.ALGORITHM_PARAM, NaiveBayesTrainer.NAIVE_BAYES_VALUE);
// create a model from traning data
DoccatModel model = DocumentCategorizerME.train("NL", sampleStream, params, new DoccatFactory());
return model;
}
答案 0 :(得分:1)
我可以想出两种测试模型的方法。无论哪种方式,您都需要有注释文档(注释我真的是专家分类的。)
第一种方法涉及使用opennlp DocCatEvaluator。语法类似于
opennlp DoccatEvaluator -model model -data sampleData
sampleData的格式应为
OUTCOME <document text....>
文档由换行符分隔。
第二种方法涉及创建DocumentCategorizer
。就像是:
(该模型是您问题中的DocCat模型)
DocumentCategorizer categorizer = new DocumentCategorizerME(model);
// could also use: Tokenizer tokenizer = new TokenizerME(tokenizerModel)
Tokenizer tokenizer = WhitespaceTokenizer.INSTANCE();
// linesample is like in your question...
for(String sample=linesample.read(); sample != null; sample=linesample.read()){
String[] tokens = tokenizer.tokenize(sample);
double[] outcomeProb = categorizer.categorize(tokens);
String sampleOutcome = categorizer.getBestCategory(outcomeProb);
// check if the outcome is right...
// keep track of # right and wrong...
}
// calculate agreement metric of your choice
由于我在此输入代码,可能会出现一两个语法错误(我或SO社区可以修复),但是想要运行数据,标记化,通过文档分类程序运行并跟踪结果就是您要评估模型的方式。
希望它有所帮助...