我想知道是否有人知道如何在多组合中对Dunnett测试的对照治疗组之间进行更改?通过第一次处理按字母/数字方式选择对照处理。我有几组数据,如果我可以简单地使用代码进行编辑,我宁愿不进行编辑,另外我有两个控件我想比较我的实验性处理。
例如,我的“数据”
TrtName Block Trt X3dpi X6dpi X12dpi
Neg_ctrl 1 1 1 4 8
Neg_ctrl 1 1 1 3 8
Neg_ctrl 1 1 2 4 9
Neg_ctrl 2 1 1 3 9
Neg_ctrl 2 1 1 4 8
Neg_ctrl 2 1 1 5 9
TC_ctrl 1 2 2 5 9
TC_ctrl 1 2 2 5 9
TC_ctrl 1 2 1 4 9
TC_ctrl 2 2 1 3 7
TC_ctrl 2 2 2 4 9
TC_ctrl 2 2 2 3 8
D_112 1 3 0 1 5
D_112 1 3 0 1 4
D_112 1 3 1 2 5
D_112 2 3 0 2 5
D_112 2 3 1 1 3
D_112 2 3 1 2 4
D_332 1 4 0 1 5
D_332 1 4 0 2 5
D_332 1 4 1 2 4
D_332 2 4 0 2 5
D_332 2 4 1 3 6
D_332 2 4 2 4 7
J_045 1 5 2 5 9
J_045 1 5 2 5 8
J_045 1 5 1 4 8
J_045 2 5 2 5 9
J_045 2 5 1 5 8
J_045 2 5 1 3 8
J_185 1 6 2 5 8
J_185 1 6 1 4
J_185 1 6 2 4 8
J_185 2 6 0 3 9
J_185 2 6 2 5 9
J_185 2 6 2 4 9
J_185 2 6 1 3 8
我正在使用的代码:
FHBficFit3dpi <- aov(X3dpi~ TrtName, FHBficData)
set.seed(115)
FHBficDunnett3dpi <- glht(model = FHBficFit3dpi, linfct=mcp(TrtName="Dunnett"))
summary(FHBficDunnett3dpi)
结果: 一般线性假设的同时测试
Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = X3dpi ~ TrtName, data = FHBficData)
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
D_332 - D_112 == 0 0.1667 0.3624 0.460 0.9873
J_045 - D_112 == 0 1.0000 0.3624 2.759 0.0390 *
J_185 - D_112 == 0 0.9286 0.3492 2.659 0.0489 *
Neg_ctrl - D_112 == 0 0.6667 0.3624 1.840 0.2534
TC_ctrl - D_112 == 0 1.1667 0.3624 3.219 0.0128 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
我意识到将模型更改为“X3dpi~Trt”会导致正确的比较,但我也想将每个处理方法与TC_ctrl组进行比较。
答案 0 :(得分:0)
尝试一下:更改因子的顺序,然后将所需的组放在第一位:
FHBficData$TrtName<-factor(FHBficData$TrtName,levels=c("TC_ctrl","D_332","J_045","J_185","Neg_ctrl","D_112"),ordered=TRUE)
FHBficFit3dpi <- aov(X3dpi~ TrtName, FHBficData)
set.seed(115)
FHBficDunnett3dpi <- glht(model = FHBficFit3dpi, linfct=mcp(TrtName="Dunnett"))
summary(FHBficDunnett3dpi)
您会得到的:
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = X3dpi ~ TrtName, data = FHBficData)
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
D_332 - TC_ctrl == 0 -1.0000 0.3624 -2.759 0.0391 *
J_045 - TC_ctrl == 0 -0.1667 0.3624 -0.460 0.9873
J_185 - TC_ctrl == 0 -0.2381 0.3492 -0.682 0.9361
Neg_ctrl - TC_ctrl == 0 -0.5000 0.3624 -1.380 0.5114
D_112 - TC_ctrl == 0 -1.1667 0.3624 -3.219 0.0128 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)