我正在实现逆优化问题而不是使用KKT条件应用强对偶定理(原始最优目标和双最优目标是相等的)。为此,需要制定原始和双重问题。我有4个发电机,每个发电机有8个能量块(b)和固定需求。这是每小时的市场清算。
原始问题是一个简单的市场清算,使用库Pyomo
:
model = ConcreteModel()
model.g1=Var(b, within=NonNegativeReals)
model.g2=Var(b, within=NonNegativeReals)
model.g3=Var(b, within=NonNegativeReals)
model.g4=Var(b, within=NonNegativeReals)
model.obj = Objective(expr=
(sum(g1price[i]*model.g1[i] for i in b)+
sum(g2price[i]*model.g2[i] for i in b)+
sum(g3price[i]*model.g3[i] for i in b)+
sum(g4price[i]*model.g4[i] for i in b)))
model.con_power_balance=Constraint(
expr=
(sum(model.g1[i] for i in b)+
sum(model.g2[i] for i in b)+
sum(model.g3[i] for i in b)+
sum(model.g4[i] for i in b)- demand) == 0)
model.con_g1max=ConstraintList()
for i in b:
model.con_g1max.add(model.g1[i] <= gsize[i])
model.con_g2max=ConstraintList()
for i in b:
model.con_g2max.add(model.g2[i] <= gsize[i])
model.con_g3max=ConstraintList()
for i in b:
model.con_g3max.add(model.g3[i]< = gsize[i])
model.con_g4max=ConstraintList()
for i in b:
model.con_g4max.add(model.g4[i] <= gsize[i])
让我们说前面的等式被命名为(1a-1f)。如果没有声明,则设置为默认最小化目标函数。由于原始问题是最小化问题,其对偶必须是最大化问题。但它相当于max [F(x)] == min [-F(x)],这就是我所应用的。这是双重问题(方程式2a-2e):
model = ConcreteModel()
model.mu_g1max=Var(b, within=NonNegativeReals)
model.mu_g2max=Var(b, within=NonNegativeReals)
model.mu_g3max=Var(b, within=NonNegativeReals)
model.mu_g4max=Var(b, within=NonNegativeReals)
model.mu_g1min=Var(b, within=NonNegativeReals)
model.mu_g2min=Var(b, within=NonNegativeReals)
model.mu_g3min=Var(b, within=NonNegativeReals)
model.mu_g4min=Var(b, within=NonNegativeReals)
model.lambda=Var(b, within=NonNegativeReals)
model.obj = Objective(expr=
(sum(gsize[i]*model.mu_g1max[i] for i in b)+
sum(gsize[i]*model.mu_g2max[i] for i in b)+
sum(gsize[i]*model.mu_g3max[i] for i in b)+
sum(gsize[i]*model.mu_g4max[i] for i in b))
model.con_g1_dual=ConstraintList()
for i in b:
model.con_g1_dual.add(model.lambda[i]+model.mu_g1min[i]-model.mu_g1max <= gsize[i])
model.con_g2_dual=ConstraintList()
for i in b:
model.con_g2_dual.add(model.lambda[i]+model.mu_g2min[i]-model.mu_g2max <= gsize[i])
model.con_g3_dual=ConstraintList()
for i in b:
model.con_g3_dual.add(model.lambda[i]+model.mu_g3min[i]-model.mu_g3max <= gsize[i])
model.con_g4_dual=ConstraintList()
for i in b:
model.con_g4_dual.add(model.lambda[i]+model.mu_g4min[i]-model.mu_g4max <= gsize[i])
一旦提出了原始和双重问题,我必须解决的真正问题是:
model = ConcreteModel()
model.lambda=Var(b, within=NonNegativeReals)
model.obj = Objective(expr=
np.absolute(sum(model.lambda[i]-lambda_ini[i] for i in b*4)))
在这里,我必须将之前编写的双重问题(2b-2e)作为约束,并且应用强对偶约束,这将是:
min(目标函数原始问题)= max(目标函数对偶问题)
这是我的问题:如何编写最后一个约束?
答案 0 :(得分:1)
好吧,我真的不明白你的问题,我还不能发表评论,所以我发帖回答,希望能对你有所帮助。
首先在pyomo中,就像@Qi Chen提到的那样,你可以访问由求解器本身生成的双重值。为此,您需要在模型中添加以下内容:
model.dual = Suffix(direction=Suffix.IMPORT)
然后你可以在其他地方调用模型的实例,你可以通过以下方式获得模型中的约束的双重值:
dual_value = inst.dual[inst.constraint_name]
e.g:
dual_con_g1max = inst.dual[inst.con_g1max]
但是,因为con_g1max
是Constraint_List
,你需要将其索引赋予双重算法。像:
inst.dual[inst.con_g1max[1]]