假设我有一个2D数组,我想从中随机采样(使用蒙特卡罗)较小的2D子阵列,如下图中的黑色斑块所示。我正在寻找一种有效的方法。
我遇到了一个function,它在部分搜索后部分实现了我想要做的事情,但它缺乏在随机位置采样补丁的能力。至少我不认为它可以根据其参数从随机位置进行采样,尽管它确实有一个我不理解的random_state
参数。
sklearn.feature_extraction.image.extract_patches_2d(image, patch_size, max_patches=None, random_state=None)
选择随机贴片坐标(2D子阵列)并使用它们从较大的阵列切片,如上图所示。允许随机采样的补丁重叠。
答案 0 :(得分:2)
这是一个采样器,可以从任何维度的数组中创建样本。它使用函数来控制切割的开始位置以及切割沿任何轴的宽度。
以下是参数说明:
arr
- 输入numpy数组。 loc_sampler_fn
- 这是您要用于设置框角的功能。如果您希望从轴的任何位置均匀地对框的角进行采样,请使用np.random.uniform
。如果您希望角落更接近阵列的中心,请使用np.random.normal
。但是,我们需要告诉函数要采样的范围。这将我们带到下一个参数。 loc_dim_param
- 这会将每个轴的大小传递给loc_sampler_fn
。如果我们使用np.random.uniform
作为位置采样器,我们希望从轴的整个范围进行采样。 np.random.uniform
有两个参数:low
和high
,因此通过将轴的长度传递给high
,它会在整个轴上均匀采样。换句话说,如果轴的长度为120
,我们需要np.random.uniform(low=0, high=120)
,因此我们设置loc_dim_param='high'
。 loc_params
- 这会将任何其他参数传递给loc_sampler_fn
。保持示例,我们需要将low=0
传递给np.random.uniform
,因此我们会传递字典loc_params={'low':0}
。从这里开始,盒子的形状基本相同。如果您希望将框高度和宽度从3到10均匀采样,请使用shape_sampler_fn=np.random.uniform
传递shape_dim_param=None
,因为我们没有使用轴的大小来表示任何内容,shape_params={'low':3, 'high':11}
def box_sampler(arr,
loc_sampler_fn,
loc_dim_param,
loc_params,
shape_sampler_fn,
shape_dim_param,
shape_params):
'''
Extracts a sample cut from `arr`.
Parameters:
-----------
loc_sampler_fn : function
The function to determine the where the minimum coordinate
for each axis should be placed.
loc_dim_param : string or None
The parameter in `loc_sampler_fn` that should use the axes
dimension size
loc_params : dict
Parameters to pass to `loc_sampler_fn`.
shape_sampler_fn : function
The function to determine the width of the sample cut
along each axis.
shape_dim_param : string or None
The parameter in `shape_sampler_fn` that should use the
axes dimension size.
shape_params : dict
Parameters to pass to `shape_sampler_fn`.
Returns:
--------
(slices, x) : A tuple of the slices used to cut the sample as well as
the sampled subsection with the same dimensionality of arr.
slice :: list of slice objects
x :: array object with the same ndims as arr
'''
slices = []
for dim in arr.shape:
if loc_dim_param:
loc_params.update({loc_dim_param: dim})
if shape_dim_param:
shape_params.update({shape_dim_param: dim})
start = int(loc_sampler_fn(**loc_params))
stop = start + int(shape_sampler_fn(**shape_params))
slices.append(slice(start, stop))
return slices, arr[slices]
在宽度介于3和9之间的2D阵列上均匀切割的示例:
a = np.random.randint(0, 1+1, size=(100,150))
box_sampler(a,
np.random.uniform, 'high', {'low':0},
np.random.uniform, None, {'low':3, 'high':10})
# returns:
([slice(49, 55, None), slice(86, 89, None)],
array([[0, 0, 1],
[0, 1, 1],
[0, 0, 0],
[0, 0, 1],
[1, 1, 1],
[1, 1, 0]]))
从10x20x30 3D阵列中获取2x2x2块的示例:
a = np.random.randint(0,2,size=(10,20,30))
box_sampler(a, np.random.uniform, 'high', {'low':0},
np.random.uniform, None, {'low':2, 'high':2})
# returns:
([slice(7, 9, None), slice(9, 11, None), slice(19, 21, None)],
array([[[0, 1],
[1, 0]],
[[0, 1],
[1, 1]]]))
出于特定目的,您看起来想要一个矩形样本,其中起始角从阵列中的任何位置均匀采样,并且沿着每个轴的样本宽度均匀采样,但可以是有限的。
这是一个生成这些样本的函数。 min_width
和max_width
可以接受整数(例如元组)或单个整数的迭代。
def uniform_box_sampler(arr, min_width, max_width):
'''
Extracts a sample cut from `arr`.
Parameters:
-----------
arr : array
The numpy array to sample a box from
min_width : int or tuple
The minimum width of the box along a given axis.
If a tuple of integers is supplied, it my have the
same length as the number of dimensions of `arr`
max_width : int or tuple
The maximum width of the box along a given axis.
If a tuple of integers is supplied, it my have the
same length as the number of dimensions of `arr`
Returns:
--------
(slices, x) : A tuple of the slices used to cut the sample as well as
the sampled subsection with the same dimensionality of arr.
slice :: list of slice objects
x :: array object with the same ndims as arr
'''
if isinstance(min_width, (tuple, list)):
assert len(min_width)==arr.ndim, 'Dimensions of `min_width` and `arr` must match'
else:
min_width = (min_width,)*arr.ndim
if isinstance(max_width, (tuple, list)):
assert len(max_width)==arr.ndim, 'Dimensions of `max_width` and `arr` must match'
else:
max_width = (max_width,)*arr.ndim
slices = []
for dim, mn, mx in zip(arr.shape, min_width, max_width):
fn = np.random.uniform
start = int(np.random.uniform(0,dim))
stop = start + int(np.random.uniform(mn, mx+1))
slices.append(slice(start, stop))
return slices, arr[slices]
生成在数组中任意位置均匀开始的框切割的示例,高度是从1到4的随机均匀绘制,宽度是从2到6的随机均匀绘制(仅显示)。在这种情况下,盒子的大小是3乘4,从第66行和第19列开始。
x = np.random.randint(0,2,size=(100,100))
uniform_box_sampler(x, (1,2), (4,6))
# returns:
([slice(65, 68, None), slice(18, 22, None)],
array([[1, 0, 0, 0],
[0, 0, 1, 1],
[0, 1, 1, 0]]))
答案 1 :(得分:1)
因此,sklearn.feature_extraction.image.extract_patches_2d
的问题似乎是强制您指定单个补丁大小,而您正在寻找随机大小的不同补丁。
这里需要注意的一点是,您的结果不能是NumPy数组(与sklearn函数的结果不同),因为数组必须具有统一长度的行/列。因此,您的输出需要是包含不同形状数组的其他数据结构。
这是一个解决方法:
from itertools import product
def random_patches_2d(arr, n_patches):
# The all possible row and column slices from `arr` given its shape
row, col = arr.shape
row_comb = [(i, j) for i, j in product(range(row), range(row)) if i < j]
col_comb = [(i, j) for i, j in product(range(col), range(col)) if i < j]
# Pick randomly from the possible slices. The distribution will be
# random uniform from the given slices. We can't use
# np.random.choice because it only samples from a 1d array.
a = np.random.choice(np.arange(len(row_comb)), size=n_patches)
b = np.random.choice(np.arange(len(col_comb)), size=n_patches)
for i, j in zip(a, b):
yield arr[row_comb[i][0]:row_comb[i][1],
col_comb[i][0]:col_comb[i][1]]
示例:
np.random.seed(99)
arr = np.arange(49).reshape(7, 7)
res = list(random_patches_2d(arr, 5))
print(res[0])
print()
print(res[3])
[[0 1]
[7 8]]
[[ 8 9 10 11]
[15 16 17 18]
[22 23 24 25]
[29 30 31 32]]
冷凝的:
def random_patches_2d(arr, n_patches):
row, col = arr.shape
row_comb = [(i, j) for i, j in product(range(row), range(row)) if i < j]
col_comb = [(i, j) for i, j in product(range(col), range(col)) if i < j]
a = np.random.choice(np.arange(len(row_comb)), size=n_patches)
b = np.random.choice(np.arange(len(col_comb)), size=n_patches)
for i, j in zip(a, b):
yield arr[row_comb[i][0]:row_comb[i][1],
col_comb[i][0]:col_comb[i][1]]
解决您的评论:您可以连续添加1个补丁并在每个补丁后检查该区域。
# `size` is just row x col
area = arr.size
patch_area = 0
while patch_area <= area: # or while patch_area <= 0.1 * area:
patch = random_patches_2d(arr, n_patches=1)
patch_area += patch