我有一个带有一些整数的numpy数组,例如,
a = numpy.array([1, 6, 6, 4, 1, 1, 4])
我现在想将所有项目放入具有相等值的“bins”中,以使标签为1
的bin包含a
的所有索引,其值为1
。对于上面的例子:
bins = {
1: [0, 4, 5],
6: [1, 2],
4: [3, 6],
}
unique
和where
的组合可以解决问题,
uniques = numpy.unique(a)
bins = {u: numpy.where(a == u)[0] for u in uniques}
但这似乎并不理想,因为唯一条目的数量可能很大。
答案 0 :(得分:2)
带附加的Defaultdict可以解决问题:
from collections import defaultdict
d = defaultdict(list)
for ix, val in enumerate(a):
d[val].append(ix)
答案 1 :(得分:1)
这是一种方法 -
def groupby_uniqueness_dict(a):
sidx = a.argsort()
b = a[sidx]
cut_idx = np.flatnonzero(b[1:] != b[:-1])+1
parts = np.split(sidx, cut_idx)
out = dict(zip(b[np.r_[0,cut_idx]], parts))
return out
通过避免使用np.split
-
def groupby_uniqueness_dict_v2(a):
sidx = a.argsort() # use .tolist() for output dict values as lists
b = a[sidx]
cut_idx = np.flatnonzero(b[1:] != b[:-1])+1
idxs = np.r_[0,cut_idx, len(b)+1]
out = {b[i]:sidx[i:j] for i,j in zip(idxs[:-1], idxs[1:])}
return out
示例运行 -
In [161]: a
Out[161]: array([1, 6, 6, 4, 1, 1, 4])
In [162]: groupby_uniqueness_dict(a)
Out[162]: {1: array([0, 4, 5]), 4: array([3, 6]), 6: array([1, 2])}
运行时测试
其他方法 -
from collections import defaultdict
def defaultdict_app(a): # @Grisha's soln
d = defaultdict(list)
for ix, val in enumerate(a):
d[val].append(ix)
return d
计时 -
案例#1:Dict值为数组
In [226]: a = np.random.randint(0,1000, 10000)
In [227]: %timeit defaultdict_app(a)
...: %timeit groupby_uniqueness_dict(a)
...: %timeit groupby_uniqueness_dict_v2(a)
100 loops, best of 3: 4.06 ms per loop
100 loops, best of 3: 3.06 ms per loop
100 loops, best of 3: 2.02 ms per loop
In [228]: a = np.random.randint(0,10000, 100000)
In [229]: %timeit defaultdict_app(a)
...: %timeit groupby_uniqueness_dict(a)
...: %timeit groupby_uniqueness_dict_v2(a)
10 loops, best of 3: 43.5 ms per loop
10 loops, best of 3: 29.1 ms per loop
100 loops, best of 3: 19.9 ms per loop
案例#2:Dict值为列表
In [238]: a = np.random.randint(0,1000, 10000)
In [239]: %timeit defaultdict_app(a)
...: %timeit groupby_uniqueness_dict(a)
...: %timeit groupby_uniqueness_dict_v2(a)
100 loops, best of 3: 4.15 ms per loop
100 loops, best of 3: 4.5 ms per loop
100 loops, best of 3: 2.44 ms per loop
In [240]: a = np.random.randint(0,10000, 100000)
In [241]: %timeit defaultdict_app(a)
...: %timeit groupby_uniqueness_dict(a)
...: %timeit groupby_uniqueness_dict_v2(a)
10 loops, best of 3: 57.5 ms per loop
10 loops, best of 3: 54.6 ms per loop
10 loops, best of 3: 34 ms per loop
答案 2 :(得分:1)
以下是使用广播,np.where()
和np.split()
的一种方式:
In [66]: unique = np.unique(a)
In [67]: rows, cols = np.where(unique[:, None] == a)
In [68]: indices = np.split(cols, np.where(np.diff(rows) != 0)[0] + 1)
In [69]: dict(zip(unique, indices))
Out[69]: {1: array([0, 4, 5]), 4: array([3, 6]), 6: array([1, 2])}