我正在尝试实现梯形图问题,我必须在最短的路径中将一个单词转换为另一个单词。显然我们可以使用广度优先搜索(BFS)来解决它但在此之前我们必须首先绘制图形。我已经实现了桶的概念,如果它们与桶类型相匹配,某些词落在桶中。但是我的图表没有正确实现。
给定的单词列表是[&#34; CAT&#34;,&#34; BAT&#34;,&#34; COT&#34;,&#34; COG&#34;,&#34; COW& #34;,&#34; RAT&#34;,&#34; BUT&#34;,&#34; CUT&#34;,&#34; DOG&#34;,&#34; WED&#34;] < / p>
因此,对于每个单词,我都可以创建一个存储桶。例如对于单词&#39; CAT&#39;,我可以有三个存储桶_AT,C_T,CA_。同样地,我可以为剩下的单词创建存储桶,并且与存储桶类型匹配的单词将属于这些存储桶。
我在图表中表达问题的代码工作正常,我得到一个这样的图表(理论上的)
现在我需要找到最短的操作来转换CAT&#39;为了实现它,我使用了BFS的改进方法。当我制作自己的样本图时,它工作正常。例如
graph = {'COG': ['DOG', 'COW', 'COT'], 'CAT': ['COT', 'BAT', 'CAT', 'RAT'], 'BUT': ['CUT', 'BAT'], 'DOG': ['COG']}
代码工作正常,我得到了正确的结果。但是如果我有一个很大的单词列表说1500,那么输入和创建一个很长的字典是不可行的。所以我做了一个函数来取这些列表中的单词,实现了我上面讨论的技术并为我创建了图形,直到这里工作正常。但是当我试图获得两个单词之间的最短距离时,我得到以下错误
for neighbour in neighbours:
TypeError: 'Vertex' object is not iterable
以下是我的代码
class Vertex:
def __init__(self,key):
self.id = key
self.connectedTo = {}
# add neighbouring vertices to the current vertex along with the edge weight
def addNeighbour(self,nbr,weight=0):
self.connectedTo[nbr] = weight
#string representation of the object
def __str__(self):
return str(self.id) + " is connected to " + str([x.id for x in self.connectedTo])
def getConnections(self):
return self.connectedTo.keys()
def getId(self):
return self.id
def getWeight(self,nbr):
return self.connectedTo[nbr]
class Graph:
def __init__(self):
self.vertList = {}
self.numVertices = 0
def addVertex(self,key):
self.numVertices += 1
newVertex = Vertex(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self,n):
if n in self.vertList:
return self.vertList[n]
else:
return None
def addEdge(self,f,t,cost=0):
if f not in self.vertList:
nv = self.addVertex(f)
if t not in self.vertList:
nv = self.addVertex(t)
self.vertList[f].addNeighbour(self.vertList[t],cost)
def getVertices(self):
return self.vertList.keys()
def __iter__(self):
return iter(self.vertList.values())
# I have only included few words in the list to focus on the implementation
wordList = ["CAT", "BAT", "COT", "COG", "COW", "RAT", "BUT", "CUT", "DOG", "WED"]
def buildGraph(wordList):
d = {} #in this dictionary the buckets will be the keys and the words will be their values
g = Graph()
for i in wordList:
for j in range(len(i)):
bucket = i[:j] + "_" + i[j+1:]
if bucket in d:
#we are storing the words that fall under the same bucket in a list
d[bucket].append(i)
else:
d[bucket] = [i]
# create vertices for the words under the buckets and join them
#print("Dictionary",d)
for bucket in d.keys():
for word1 in d[bucket]:
for word2 in d[bucket]:
#we ensure same words are not treated as two different vertices
if word1 != word2:
g.addEdge(word1,word2)
return g
def bfs_shortest_path(graph, start, goal):
explored = []
queue = [[start]]
if start == goal:
return "The starting node and the destination node is same"
while queue:
path = queue.pop(0)
node = path[-1]
if node not in explored:
neighbours = graph[node] # it shows the error here
for neighbour in neighbours:
new_path = list(path)
new_path.append(neighbour)
queue.append(new_path)
if neighbour == goal:
return new_path
explored.append(node)
return "No connecting path between the two nodes"
# get the graph object
gobj = buildGraph(wordList)
# just to check if I am able to fetch the data properly as mentioned above where I get the error (neighbours = graph[node])
print(gobj["CAT"]) # ['COT', 'BAT', 'CUT', 'RAT']
print(bfs_shortest_path(gobj, "CAT", "DOG"))
要检查每个顶点的相邻顶点,我们可以
for v in gobj:
print(v)
输出如下所示,正确描述了上图。
CAT is connected to ['COT', 'BAT', 'CUT', 'RAT']
RAT is connected to ['BAT', 'CAT']
COT is connected to ['CUT', 'CAT', 'COG', 'COW']
CUT is connected to ['COT', 'BUT', 'CAT']
COG is connected to ['COT', 'DOG', 'COW']
DOG is connected to ['COG']
BUT is connected to ['BAT', 'CUT']
BAT is connected to ['BUT', 'CAT', 'RAT']
COW is connected to ['COT', 'COG']
CAT is connected to ['COT', 'BAT', 'CUT', 'RAT']
那可能会出现什么问题?
答案 0 :(得分:0)
好的,所以我想出了问题。问题在于这行代码
neighbours = graph[node]
基本上它正在尝试获取特定节点的邻域。因此它需要访问被声明为vertList
类的属性的Graph
字典。因此,对象可以访问dictonary值,必须实现__getitem__
特殊方法。所以我在Graph
类下声明如下
# returns the value for the key which will be an object
def __getitem__(self, key):
return self.vertList[key]
现在graph[node]
将能够获取节点的对象表示,因为vertList
字典的值是顶点对象(vertList
将顶点名称存储为键,顶点对象存储为值因此,我必须明确告诉它获取对象的邻居而不是对象本身。所以我可以在getConnections()
类下调用Vertex
方法,进一步调用{{1}获取特定顶点对象的邻居对象的属性。 (connectedTo
字典将顶点对象作为键,边缘权重作为值。)
所以现在这些邻居对象将拥有自己的ID,我可以访问它并将其用于BFS操作。下面的行是修改后的代码(在connectedTo
方法下)完成上述工作。
bfs_shortest_path
现在我获取特定节点的neigbours列表并使用它。其余代码保持不变。