我有一个大的data.table(+ 12M行),我需要这样转换:
将具有相同第一列值(将其称为BookId)的每一行折叠为一行,并将其他列合并为一个大的"数据"领域。
此表包含2.7M独特的BookId&#39>
即:
BookId Col1 Col2 ... ColN B001 Author Bob ... ... B002 Author Marc ... ... B002 Editor Bob Inc ... ... B001 Editor MyBooks ... ...
成绩结果:
BookId data B001 Bob,MyBooks, ... B002 Marc,Bob Inc, ...
目前,我已经能够使用子集重现此结构,但这非常慢,构建一行需要300毫秒,这意味着实现该过程最多需要9天。
所以我决定使用并行的foreach循环来加速这个过程 我的第一个问题是循环使用bookId List,但它只会将全局总时间除以不满足的核心数(8核意味着+1天)。此外,这意味着每个进程都会自动导出大量数据,因为它们都需要整个data.table对象。
我发现了另一种通过将主数据.table分割为基于bookId列表的独立子集来改进过程的方法,然后使每个集群在该子集上工作(较少的行意味着更快的子集生成)。 不幸的是,我无法将我的子集导出到群集,因为他们有一个"动态"名称。 我试过" .export" param,但我想它并不知道当前的" i"评估时的价值。 我怎样才能做到这一点?它甚至可能吗?
我是R的新手,我被告知总有很多方法可以实现同样的目标,我是否选择了实现这一目标的最佳方法?
这是我的代码:
# Create cluster based on available cores
cores = detectCores()
cl <- makeCluster(cores)
registerDoParallel(cl)
# Load datas and generate BookId lists
books <- fread("books.tab")
bookId.unique.list <- unique(books$BookId)
bookId.list <- books$BookId
# Split datatable into "equals" subsets
subset.length = ceiling(length(book.unique.list)/cores)
for (i in 1:(cores)) {
start = (i-1)*subset.length
end = (i)*subset.length
list = book.unique.list[start:end]
assign(paste("books",i,sep=""), books[books$BookId %in% list])
assign(paste("book.list",i,sep=""), list )
}
# Prepare resulting DT
res = data.table(BookId = character(0), data = character(0))
# Parallel loop
res <- foreach(i = 1:cores, .combine = rbind, .export = paste0("book", i), .packages = c("data.table")) %dopar% {
#Try to get the named subset corresponding to the current iteration (i)
# IE : Books1, Books2...
BookSubset = get(paste0("book", i))
Book.list.subset = unique(BookSubset$BookId)
temp = data.table(BookId = character(0), data = character(0))
for (i in 1:length(Book.list.subset)) {
bookId = Book.list.subset[i]
subset <- BookSubset[which(Book.list.subset ==bookId)]
output = capture.output(write.table(subset, stdout()quote=FALSE, row.names=FALSE,col.names=FALSE)
temp <- rbind(hist, data.table(zkf_BOOK = c(bookId), data = c(output)))
}
temp
}
以下是dput[head(books))
的结果:
structure(list(BookId = c("BOOKXXXX774051532082", "BOOKXXXX776514515608",
"BOOKXXXX776287821289", "BOOKXXXX776514515608", "BOOKXXXX774051532082",
"BOOKXXXX774051532082"), V2 = c("ZUSRXXXX842901236553",
"ZUSRXXXX371255229634",
"ZUSRXXXX656080986411", "ZUSRXXXX371255229634", "ZUSRXXXX842901236553",
"ZUSRXXXX842901236553"), V3 = c("BOOKEVTX776757835463",
"BOOKEVTX776762775464",
"BOOKEVTX776772854465", "BOOKEVTX776773643466", "", "BOOKEVTX776995487467"
), V4 = c("ZACTIONX215229995154", "ZACTIONX533300043134",
"ZACTIONX533300043134",
"ZACTIONX533300043134", "", "ZACTIONX215229995154"), V5 = c("",
"", "", "", "", ""), V6 = c("", "", "", "", "MAILOUTX776774376684",
""), V7 = c("", "", "", "", "", ""), V8 = c("", "", "", "", "",
""), V9 = c("", "", "", "", "", ""), V10 = c("", "", "", "",
"", ""), V11 = c("", "", "", "", "", "")), .Names = c("zkf_BOOK",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11"), class =
c("data.table",
"data.frame"), row.names = c(NA, -6L))
以下是我&#34;真实&#34;的示例。数据输入:
BOOKXXXX774051532082 ZUSRXXXX842901236553 BOOKEVTX776757835463 ZACTIONX215229995154
BOOKXXXX776514515608 ZUSRXXXX371255229634 BOOKEVTX776762775464 ZACTIONX533300043134
BOOKXXXX776287821289 ZUSRXXXX656080986411 BOOKEVTX776772854465 ZACTIONX533300043134
BOOKXXXX776514515608 ZUSRXXXX371255229634 BOOKEVTX776773643466 ZACTIONX533300043134
BOOKXXXX774051532082 ZUSRXXXX842901236553 MAILOUTX776774376684
BOOKXXXX774051532082 ZUSRXXXX842901236553 BOOKEVTX776995487467 ZACTIONX215229995154
BOOKXXXX776287821289 ZUSRXXXX656080986411 BOOKEVTX777107387468 ZACTIONX533300043134
和预期的输出
BOOKXXXX774051532082 ZUSRXXXX842901236553|BOOKEVTX776757835463|ZACTIONX215229995154|||||||;ZUSRXXXX842901236553||||MAILOUTX776774376684|||||;ZUSRXXXX842901236553|BOOKEVTX776995487467|ZACTIONX215229995154|||||||
BOOKXXXX776514515608 ZUSRXXXX371255229634|BOOKEVTX776762775464|ZACTIONX533300043134|||||||;ZUSRXXXX371255229634|BOOKEVTX776773643466|ZACTIONX533300043134|||||||
BOOKXXXX776287821289 ZUSRXXXX656080986411|BOOKEVTX776772854465|ZACTIONX533300043134|||||||;ZUSRXXXX656080986411|BOOKEVTX777107387468|ZACTIONX533300043134|||||||
答案 0 :(得分:1)
OP要求两次崩溃操作:
zkf_BOOK
除外)折叠到由|
分隔的一个数据字段中。zkf_BOOK
组,请展开由;
通过调用Reduce()
完成列内折叠,而跨行折叠则使用paste()
分组完成。使用data.table
时,by =
参数中的列不会包含在.SD
的操作中。
library(data.table)
setDT(books)[, paste(Reduce(function(x, y) paste(x, y, sep = "|"), .SD), collapse = ";"),
by = zkf_BOOK]
zkf_BOOK 1: BOOKXXXX774051532082 2: BOOKXXXX776514515608 3: BOOKXXXX776287821289 V1 1: ZUSRXXXX842901236553|BOOKEVTX776757835463|ZACTIONX215229995154|||||||;ZUSRXXXX842901236553||||MAILOUTX776774376684|||||;ZUSRXXXX842901236553|BOOKEVTX776995487467|ZACTIONX215229995154||||||| 2: ZUSRXXXX371255229634|BOOKEVTX776762775464|ZACTIONX533300043134|||||||;ZUSRXXXX371255229634|BOOKEVTX776773643466|ZACTIONX533300043134||||||| 3: ZUSRXXXX656080986411|BOOKEVTX776772854465|ZACTIONX533300043134|||||||
请注意,与预期结果的差异是由于dput[head(books))
仅返回6行,而打印数据输入和预期输出基于7行(或更多)。