我试图了解如何手动计算多元线性回归(OLS)的置信区间。我的问题是我不知道如何计算所有单个系数的标准误差。
对于只有一个自变量的回归,我遵循以下教程:http://stattrek.com/regression/slope-confidence-interval.aspx。本教程提供以下公式:
事实证明,该公式有效。但是,我并没有完全理解这个公式。例如,为什么(-2)位于公式的顶部。为了验证正确性,我编写了以下已经显示标准错误的代码:
x<-1:50
y<-c(x[1:48]+rnorm(48,0,5),rnorm(2,150,5))
QR <- rq(y~x, tau=0.5)
summary(QR, se='boot')
LM<-lm(y~x)
alligator = data.frame(
lnLength = c(3.78, 3.71, 3.73, 3.78),
lnWeight = c(4.43, 4.38, 4.42, 4.25)
)
alli.mod1 = lm(lnWeight ~ ., data = alligator)
newdata = data.frame(
lnLength = c(3.78, 3.71, 3.73, 3.78)
)
y_predicted = predict(alli.mod1, newdata, interval="predict")[,1]
length_mean = mean(alligator$lnLength)
> summary(alli.mod1)
Call:
lm(formula = lnWeight ~ ., data = alligator)
Residuals:
1 2 3 4
0.08526 -0.02368 0.03316 -0.09474
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.5279 5.7561 1.308 0.321
lnLength -0.8421 1.5349 -0.549 0.638
Residual standard error: 0.09462 on 2 degrees of freedom
Multiple R-squared: 0.1308, Adjusted R-squared: -0.3038
F-statistic: 0.301 on 1 and 2 DF, p-value: 0.6383
然后我使用以下r代码手动计算SE(根据上面的公式):
rss = (alligator$lnWeight[1] - y_predicted[1])^2 +
(alligator$lnWeight[2] - y_predicted[2])^2 +
(alligator$lnWeight[3] - y_predicted[3])^2 +
(alligator$lnWeight[4] - y_predicted[4])^2
a = sqrt(rss/(length(y_predicted)-2))
b = sqrt((alligator$lnLength[1] - length_mean)^2 +
(alligator$lnLength[2] - length_mean)^2 +
(alligator$lnLength[3] - length_mean)^2 +
(alligator$lnLength[4] - length_mean)^2)
a/b
1.534912
其结果与摘要的SE(alli.mod1)相同。所以,我想,当我尝试使用2个变量时,它可能会起作用。不幸的是,这导致了错误的答案。如下面的代码所示:
alligator = data.frame(
lnLength = c(3.78, 3.71, 3.73, 3.78),
lnColor = c(2.43, 2.59, 2.46, 2.22),
lnWeight = c(4.43, 4.38, 4.42, 4.25)
)
alli.mod1 = lm(lnWeight ~ ., data = alligator)
newdata = data.frame(
lnLength = c(3.78, 3.71, 3.73, 3.78),
lnColor = c(2.43, 2.59, 2.46, 2.22)
)
y_predicted = predict(alli.mod1, newdata, interval="predict")[,1]
length_mean = mean(alligator$lnLength)
color_mean = mean(alligator$lnColor)
rss = (alligator$lnWeight[1] - y_predicted[1])^2 +
(alligator$lnWeight[2] - y_predicted[2])^2 +
(alligator$lnWeight[3] - y_predicted[3])^2 +
(alligator$lnWeight[4] - y_predicted[4])^2
a = sqrt(rss/(length(y_predicted)-2))
b = sqrt((alligator$lnColor[1] - color_mean)^2 +
(alligator$lnColor[2] - color_mean)^2 +
(alligator$lnColor[3] - color_mean)^2 +
(alligator$lnColor[4] - color_mean)^2)
b1 = sqrt((alligator$lnLength[1] - length_mean)^2 +
(alligator$lnLength[2] - length_mean)^2 +
(alligator$lnLength[3] - length_mean)^2 +
(alligator$lnLength[4] - length_mean)^2)
> summary(alli.mod1)
Call:
lm(formula = lnWeight ~ ., data = alligator)
Residuals:
1 2 3 4
0.006725 -0.041534 0.058147 -0.023338
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.5746 8.8650 -0.403 0.756
lnLength 1.6569 2.1006 0.789 0.575
lnColor 0.7140 0.4877 1.464 0.381
Residual standard error: 0.07547 on 1 degrees of freedom
Multiple R-squared: 0.7235, Adjusted R-squared: 0.1705
F-statistic: 1.308 on 2 and 1 DF, p-value: 0.5258
> a/b
1
0.2009918
> a/b1
1
0.8657274
我可以遵循计算标准错误的一般方法吗?
答案 0 :(得分:2)
我建议对OLS进行一些一般阅读,包括多元回归。有几个免费提供的信息来源;一个起点可能是Penn State's STAT 501 website。您可以在麻省理工学院开放课件的these slides幻灯片8和9中找到OLSβ标准误差公式的推导。
基本上,标准误差是β中方差的平方根。正如你在我链接的幻灯片中看到的那样,系数方差 - 协方差矩阵的公式是σ 2 ( X ' X )< sup> -1 ,其中σ 2 是误差项的方差。然后每个β j 的方差是该矩阵的 j - 对角线。由于我们不知道真正的σ 2 ,我们如上所述估计它 - 我们取平方误差之和的平方根除以 n - p ,其中 p 是解释变量的数量(包括/ +截距) - 在简单回归中 p = 2.但是,在简单回归的情况下, ( X ' X ) -1 的对角线可以通过你的公式的分母找到,这不是这种情况在多元回归中;你需要做矩阵代数。幸运的是,在R中这很容易:
# First we make the example data
alligator = data.frame(
lnLength = c(3.78, 3.71, 3.73, 3.78),
lnColor = c(2.43, 2.59, 2.46, 2.22),
lnWeight = c(4.43, 4.38, 4.42, 4.25)
)
# Then we use lm() for a check on our answers later
alli.mod1 = lm(lnWeight ~ ., data = alligator)
# Find the sum of the squared residuals
rss <- sum(alli.mod1$residuals^2)
# And use that to find the estimate of sigma^2, commonly called S
S <- sqrt(rss / (length(alli.mod1$residuals) - length(alli.mod1$coefficients)))
# Make the X matrix; a column of 1s for the intercept and one for each variable
X <- cbind(rep(1, nrow(alligator)), alligator$lnLength, alligator$lnColor)
# We can multiply matrices using %*%, transpose them with t(),
# and invert them with solve(); so we directly apply the formula above with:
std.errors <- S * sqrt(diag(solve(t(X) %*% X)))
# Now we check our answers:
summary(alli.mod1)$coefficients[ , 2] # the second column is the std. errors
# (Intercept) lnLength lnColor
# 8.8650459 2.1005738 0.4876803
std.errors
# [1] 8.8650459 2.1005738 0.4876803