使用插入符包,我无法使用以下用户定义的摘要功能。它应该计算logloss,但我不断发现logloss。下面是一个可重复的例子:
data <- data.frame('target' = sample(c('Y','N'),100,replace = T), 'X1' = runif(100), 'X2' = runif(100))
log.loss2 <- function(data, lev = NULL, model = NULL) {
logloss = -sum(data$obs*log(data$Y) + (1-data$obs)*log(1-data$Y))/length(data$obs)
names(logloss) <- c('LL')
logloss
}
fitControl <- trainControl(method="cv",number=1, classProbs = T, summaryFunction = log.loss2)
my.grid <- expand.grid(.decay = c(0.05), .size = c(2))
fit.nnet2 <- train(target ~., data = data,
method = "nnet", maxit = 500, metric = 'LL',
tuneGrid = my.grid, verbose = T)
答案 0 :(得分:2)
错误原因是您未在训练中加入trControl = fitControl
。但是,这会导致另一个错误,原因是data$obs
和data$pred
是因素 - 需要转换为数字,这会产生1
或2
,减去{ {1}}提供了所需的1
和0
1
有几点需要注意:
此丢失函数仅适用于包含log.loss2 <- function(data, lev = NULL, model = NULL) {
data$pred <- as.numeric(data$pred)-1
data$obs <- as.numeric(data$obs)-1
logloss = -sum(data$obs*log(data$Y) + (1-data$obs)*log(1-data$Y))/length(data$obs)
names(logloss) <- c('LL')
logloss
}
fitControl <- trainControl(method="cv",number=1, classProbs = T, summaryFunction = log.loss2)
fit.nnet2 <- train(target ~., data = data,
method = "nnet", maxit = 500, metric = "LL" ,
tuneGrid = my.grid, verbose = T, trControl = fitControl)
#output
Neural Network
100 samples
2 predictor
2 classes: 'N', 'Y'
No pre-processing
Resampling: Cross-Validated (1 fold)
Summary of sample sizes: 0
Resampling results:
LL
0.6931472
Tuning parameter 'size' was held constant at a value of 2
Tuning parameter 'decay' was held constant at a value of 0.05
/ N
作为类的数据,因为概率定义为Y
,更好的方法是找到类的名称并使用该类。此外,截断data$Y
以来的概率值的良好做法不是一个好主意:
log(0)
答案 1 :(得分:1)
@missuse回答了这个问题,但是我想在logloss函数中添加权重选项:
# Cross-entropy error function
LogLoss <- function(pred, true, eps = 1e-15, weights = NULL) {
# Bound the results
pred = pmin(pmax(pred, eps), 1 - eps)
if (is.null(weights)) {
return(-(sum(
true * log(pred) + (1 - true) * log(1 - pred)
)) / length(true))
} else{
return(-weighted.mean(true * log(pred) + (1 - true) * log(1 - pred), weights))
}
}
# Caret train weighted logloss summary function
caret_logloss <- function(data, lev = NULL, model = NULL) {
cls <- levels(data$obs) #find class names
loss <- LogLoss(
pred = data[, cls[2]],
true = as.numeric(data$obs) - 1,
weights = data$weights
)
names(loss) <- c('MyLogLoss')
loss
}