我想了解k-means方法在PySpark中是如何工作的。 为此,我已经完成了这个小例子:
In [120]: entry = [ [1,1,1],[2,2,2],[3,3,3],[4,4,4],[5,5,5],[5,5,5],[5,5,5],[1,1,1],[5,5,5]]
In [121]: rdd_entry = sc.parallelize(entry)
In [122]: clusters = KMeans.train(rdd_entry, k=5, maxIterations=10, initializationMode="random")
In [123]: rdd_labels = clusters.predict(rdd_entry)
In [125]: rdd_labels.collect()
Out[125]: [3, 1, 0, 0, 2, 2, 2, 3, 2]
In [126]: entry
Out[126]:
[[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],
[5, 5, 5],
[5, 5, 5],
[1, 1, 1],
[5, 5, 5]]
乍一看似乎rdd_labels返回每个观察所属的集群,尊重原始rdd的顺序。虽然在这个例子中很明显,但如果能够处理800万次观察,我怎能确定?
此外,我想知道如何加入rdd_entry和rdd_labels,尊重该顺序,以便rdd_entry的每个观察都正确标记其集群。 我试图做一个.join(),但它跳错了
In [127]: rdd_total = rdd_entry.join(rdd_labels)
In [128]: rdd_total.collect()
TypeError: 'int' object has no attribute '__getitem__'
答案 0 :(得分:1)
希望它有所帮助! (此解决方案基于pyspark.ml
)
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
#sample data
df = sc.parallelize([[1,1,1],[2,2,2],[3,3,3],[4,4,4],[5,5,5],[5,5,5],[5,5,5],[1,1,1],[5,5,5]]).\
toDF(('col1','col2','col3'))
vecAssembler = VectorAssembler(inputCols=df.columns, outputCol="features")
vector_df = vecAssembler.transform(df)
#kmeans clustering
kmeans=KMeans(k=3, seed=1)
model=kmeans.fit(vector_df)
predictions=model.transform(vector_df)
predictions.show()
输出是:
+----+----+----+-------------+----------+
|col1|col2|col3| features|prediction|
+----+----+----+-------------+----------+
| 1| 1| 1|[1.0,1.0,1.0]| 0|
| 2| 2| 2|[2.0,2.0,2.0]| 0|
| 3| 3| 3|[3.0,3.0,3.0]| 2|
| 4| 4| 4|[4.0,4.0,4.0]| 1|
| 5| 5| 5|[5.0,5.0,5.0]| 1|
| 5| 5| 5|[5.0,5.0,5.0]| 1|
| 5| 5| 5|[5.0,5.0,5.0]| 1|
| 1| 1| 1|[1.0,1.0,1.0]| 0|
| 5| 5| 5|[5.0,5.0,5.0]| 1|
+----+----+----+-------------+----------+