我正在尝试使用我在Spark上从MLlib返回的模型进行预测。目标是生成(orinalLabelInData,predictLabel)的元组。然后这些元组可用于模型评估目的。实现这一目标的最佳方法是什么?感谢。
假设parsedTrainData是LabeledPoint的RDD
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils
parsedTrainData = sc.parallelize([LabeledPoint(1.0, [11.0,-12.0,23.0]),
LabeledPoint(3.0, [-1.0,12.0,-23.0])])
model = DecisionTree.trainClassifier(parsedTrainData, numClasses=7,
categoricalFeaturesInfo={}, impurity='gini', maxDepth=8, maxBins=32)
model.predict(parsedTrainData.map(lambda x: x.features)).take(1)
这会给出预测,但我不确定如何将每个预测与数据中的原始标签相匹配。
我试过
parsedTrainData.map(lambda x: (x.label, dtModel.predict(x.features))).take(1)
然而,似乎我向工人发送模型的方式在这里不是一件有效的事情
/spark140/python/pyspark/context.pyc in __getnewargs__(self)
250 # This method is called when attempting to pickle SparkContext, which is always an error:
251 raise Exception(
--> 252 "It appears that you are attempting to reference SparkContext from a broadcast "
253 "variable, action, or transforamtion. SparkContext can only be used on the driver, "
254 "not in code that it run on workers. For more information, see SPARK-5063."
Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforamtion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
答案 0 :(得分:3)
嗯,根据official documentation,您可以简单地压缩预测和标签:
predictions = model.predict(parsedTrainData.map(lambda x: x.features))
labelsAndPredictions = parsedTrainData.map(lambda x: x.label).zip(predictions)