给出以下代码
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE PolyKinds #-}
type family Tagged (m :: * -> *) :: k
class Example (t :: k) (a :: *) where
type Return t a
a :: (Monad m, Tagged m ~ t) => a -> m (Return t a)
data A
data A' a
data B = B
instance Example A B where
type Return A B = ()
a B = return ()
-- This is why I want a PolyKinded 't'
instance Example A' B where
type Return A' B = ()
a B = return ()
我收到类型错误(指向行a :: (Monad m ...
)
• Could not deduce: Return (Tagged m) a ~ Return t a
from the context: (Example t a, Monad m, Tagged m ~ t)
bound by the type signature for:
a :: (Example t a, Monad m, Tagged m ~ t) =>
a -> m (Return t a)
...
Expected type: a -> m (Return t a)
Actual type: a -> m (Return (Tagged m) a)
NB: ‘Return’ is a type function, and may not be injective
The type variable ‘k0’ is ambiguous
• In the ambiguity check for ‘a’
To defer the ambiguity check to use sites, enable AllowAmbiguousTypes
When checking the class method:
a :: forall k (t :: k) a.
Example t a =>
forall (m :: * -> *).
(Monad m, Tagged m ~ t) =>
a -> m (Return t a)
In the class declaration for ‘Example’
我可以使用a
向Proxy t
引入一个参数,如果我在呼叫站点给出签名,这将有效:test = a (Proxy :: Proxy A) B
但这是我要避免的。我想要的是
newtype Test t m a = Test
{ runTest :: m a
} deriving (Functor, Applicative, Monad)
type instance Tagged (Test t m) = t
test :: Monad m => Test A m ()
test = a B
我希望使用类型实例从上下文t
中找到Test A m ()
。似乎应该可以在删除类型注释PolyKinds
和A'
的实例后编译模块。 k0
来自哪里?
我认为解决方法是删除PolyKinds并使用额外的数据类型,如data ATag; data A'Tag; data BTag
等。
答案 0 :(得分:2)
这只是部分答案。
我试图明确表达那种。
type family Tagged k (m :: * -> *) :: k
class Example k (t :: k) (a :: *) where
type Return k (t :: k) (a :: *)
a :: forall m . (Monad m, Tagged k m ~ t) => a -> m (Return k t a)
并且,在启用了许多扩展后,观察到了这一点:
> :t a
a :: (Example k (Tagged k m) a, Monad m) =>
a -> m (Return k (Tagged k m) a)
因此,编译器抱怨,因为仅Example k (Tagged k m) a
无法确定实例a,m
。也就是说,我们不知道如何选择k
。
我想,从技术上讲,我们可能会有不同的Example k (Tagged k m) a
个实例,例如一个用于k=*
,另一个用于k=(*->*)
。
直观地说,了解t
应该可以让我们找到k
,但Return
是非单射的,阻止我们找到t
。