从COCO集中使用微调检查点训练Oxford-IIIT Pet Dataset时,运行eval.py脚本时出现以下错误消息:
损坏的JPEG数据:标记0xd9之前的245个外部字节
在评估失败后运行detect.py脚本时,我得到了没有任何检测框的附加图像。
detect.py的代码:
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tensorflow as tf
import zipfile
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
PATH_TO_CKPT = os.path.join('inference_graphs', 'frozen_inference_graph.pb')
PATH_TO_LABELS = 'pet_label_map.pbtxt'
PATH_TO_TEST_IMAGES_DIR = os.path.join('test')
NUM_CLASSES = 37
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR,'{}'.format(file)) for file in os.listdir(PATH_TO_TEST_IMAGES_DIR)]
print(TEST_IMAGE_PATHS)
#TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image#{}.jpg'.format(i)) for i in range(1, 3) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def write_jpeg(data, filepath):
g = tf.Graph()
with g.as_default():
data_t = tf.placeholder(tf.uint8)
op = tf.image.encode_jpeg(data_t, format='rgb', quality=100)
init = tf.initialize_all_variables()
with tf.Session(graph=g) as sess:
sess.run(init)
data_np = sess.run(op, feed_dict={ data_t: data })
with open(filepath, 'wb') as fd:
fd.write(data_np)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
write_jpeg(image_np, os.path.join(os.path.dirname(image_path),'inferred', os.path.basename(image_path)))
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.show()
print(image_path)
print(boxes)
print(classes)
print(scores)
#write_jpeg(image_np, os.path.join(os.path.dirname(image_path),os.path.splitext(os.path.basename(image_path))[1]))