我试图在GitHub上关注TensorFlow的对象检测示例。我成功训练了我的模型,但是当我试图评估我的模型时,无论是在我的本地机器上运行还是谷歌云端的ML引擎,我都遇到了错误。
Traceback (most recent call last):
File "/usr/lib/python2.7/runpy.py", line 162,
in _run_module_as_main "__main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code exec code
in run_globals File "/root/.local/lib/python2.7/site-packages/object_detection/eval.py", line 130, in <module> tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 44,
in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "/root/.local/lib/python2.7/site-packages/object_detection/eval.py", line 117,
in main label_map = label_map_util.load_labelmap(input_config.label_map_path)
File "/root/.local/lib/python2.7/site-packages/object_detection/utils/label_map_util.py", line 122,
in load_labelmap label_map.ParseFromString(label_map_string) DecodeError: Error parsing message
我使用以下内容在云平台上进行评估;
gcloud ml-engine jobs submit training `whoami`_object_detection_eval_`date +%s`
--job-dir=gs://poochie/training
--packages /home/User/Downloads/models-master/research/dist/object_detection-0.1.tar.gz,/home/User/Downloads/models-master/research/slim/dist/slim-0.1.tar.gz
--module-name object_detection.eval
--region europe-west1
--scale-tier BASIC_GPU
--
--checkpoint_dir=gs://poochie/training
--eval_dir=gs://poochie/eval
--pipeline_config_path=gs://poochie/dogs.config
基于;
gcloud ml-engine jobs submit training `whoami`_object_detection_eval_`date +%s` \
--job-dir=${YOUR_GCS_BUCKET}/train \
--packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
--module-name object_detection.eval \
--region us-central1 \
--scale-tier BASIC_GPU \
-- \
--checkpoint_dir=${YOUR_GCS_BUCKET}/train \
--eval_dir=${YOUR_GCS_BUCKET}/eval \
--pipeline_config_path=${YOUR_GCS_BUCKET}/data/${CONFIG_FILE}
培训包含我在火车过程中的检查点
eval是评估过程输出的空文件
dogs.config
# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model: {
faster_rcnn {
num_classes: 1
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 0
learning_rate: .0002
}
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
#fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "gs://poochie/train.record"
}
label_map_path: "gs://poochie/labelmap.pbtxt"
}
eval_config: {
num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "gs://poochie/valid.record"
}
label_map_path: "gs://poochie/labelmap.pbtxt"
shuffle: false
num_readers: 1
}
labelmap.pbtxt
{
"affenpinscher": 1
}
编辑我将标签贴图更改为
item {
id: 1
name: 'affenpinscher'
}
它解决了这个问题。
答案 0 :(得分:0)
调用.ParseFromString(...)时,可能超出了输入流的大小。如果是这种情况,您可以尝试修复此问题并通过执行以下操作在本地运行:
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
在运行tensorflow之前。
答案 1 :(得分:0)
gs://poochie/labelmap.pbtxt似乎存在语法错误。你介意分享吗?