在创建上下文时在h2o中获取异常

时间:2017-11-06 04:10:21

标签: h2o sparkling-water

当我尝试通过Spark 1.6.3创建h2o contetx时,我在代码中遇到异常

17/11/06 12:01:39 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[H2O Launcher thread,5,main]
java.lang.NoSuchMethodError: org.joda.time.DateTime.now()Lorg/joda/time/DateTime;
        at water.util.Timer.nowAsLogString(Timer.java:38)
        at water.util.Log.header(Log.java:163)
        at water.util.Log.write0(Log.java:131)
        at water.util.Log.write0(Log.java:124)
        at water.util.Log.write(Log.java:109)
        at water.util.Log.log(Log.java:86)
        at water.util.Log.info(Log.java:72)
        at water.H2OSecurityManager.<init>(H2OSecurityManager.java:57)
        at water.H2OSecurityManager.instance(H2OSecurityManager.java:79)
        at water.H2ONode.<init>(H2ONode.java:127)

编辑:我已经附加了POM文件,它是一个长文件,但它显示了依赖项。我认为我的依赖关系会出现问题。

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>au.com.vroc.mdm</groupId>
    <artifactId>mdm</artifactId>
    <version>0.0.1-SNAPSHOT</version>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <java.version>1.8</java.version>
        <gson.version>2.8.0</gson.version>
        <java.home>${env.JAVA_HOME}</java.home>
    </properties>

    <dependencies>

        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.10 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.11</artifactId>
            <version>2.1.1</version>
            <!-- <scope>provided</scope> -->
        </dependency>
        <dependency>
            <groupId>com.databricks</groupId>
            <artifactId>spark-csv_2.10</artifactId>
            <version>1.5.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/ai.h2o/h2o-core -->
        <dependency>
            <groupId>ai.h2o</groupId>
            <artifactId>h2o-core</artifactId>
            <version>3.14.0.7</version>
            <!-- <scope>runtime</scope> -->
        </dependency>
        <!-- https://mvnrepository.com/artifact/ai.h2o/h2o-algos -->
        <dependency>
            <groupId>ai.h2o</groupId>
            <artifactId>h2o-algos</artifactId>
            <version>3.14.0.7</version>
            <!-- <scope>runtime</scope> -->
        </dependency>
        <!-- https://mvnrepository.com/artifact/ai.h2o/h2o-genmodel -->
        <dependency>
            <groupId>ai.h2o</groupId>
            <artifactId>h2o-genmodel</artifactId>
            <version>3.14.0.7</version>
            <!-- <scope>runtime</scope> -->
        </dependency>
        <!-- https://mvnrepository.com/artifact/ai.h2o/sparkling-water-core_2.10 -->
        <dependency>
            <!-- <groupId>ai.h2o</groupId> <artifactId>sparkling-water-core_2.10</artifactId> 
                <version>1.6.11</version> -->

            <groupId>ai.h2o</groupId>
            <artifactId>sparkling-water-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>${gson.version}</version>
        </dependency>
        <dependency>
            <groupId>com.cloudera.livy</groupId>
            <artifactId>livy-client-http</artifactId>
            <version>0.3.0</version>
        </dependency>
        <dependency>
            <groupId>com.cloudera.livy</groupId>
            <artifactId>livy-api</artifactId>
            <version>0.3.0</version>
        </dependency>
        <dependency>
            <groupId>it.unimi.dsi</groupId>
            <artifactId>fastutil</artifactId>
            <version>7.1.0</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.5</version>
        </dependency>
        <!-- <dependency> <groupId>jdk.tools</groupId> <artifactId>jdk.tools</artifactId> 
            <scope>system</scope> <version>1.8</version> <systemPath>${java.home}/lib/tools.jar</systemPath> 
            </dependency> -->
        <!-- https://mvnrepository.com/artifact/joda-time/joda-time -->
        <dependency>
            <groupId>org.apache.phoenix</groupId>
            <artifactId>phoenix-spark</artifactId>
            <version>4.7.0-HBase-1.1</version>
            <!-- <scope>provided</scope> -->
        </dependency>

        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>1.1.0-cdh5.4.0</version>
        </dependency>
    </dependencies>

    <repositories>
        <repository>
            <id>cloudera.repo</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
            <name>Cloudera Repositories</name>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>Local repository</id>
            <url>file://${basedir}/lib</url>
        </repository>

    </repositories>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.5.2</version>
                <!-- <version>3.0.0</version> -->
                <configuration>
                    <!-- get all project dependencies -->
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <!--<id>assemble-all</id> -->
                        <!-- bind to the packaging phase -->
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

创建模型完全由livyclient完成,如下所示:

public RegressionMetric call(JobContext ctx) throws Exception {
    if (!checkInputValid()) {
        throw new IllegalArgumentException("Mandatory parameters are not set");
    } else {
        RegressionMetric metric = new RegressionMetric();
        Dataset<Row> sensordataDF = this.InitializeH2OModel(ctx);

        SQLContext hc = ctx.sqlctx();

        // Save the H2OContext so that we can extract the H2oFrames later
        H2OContext h2oContext = H2OContext.getOrCreate(ctx.sc().sc());
    //...       
}
}

在上面,InitializeH2OModel(ctx)是一个复杂函数,它生成用于训练模型的火花框架。 prgram可以正常运行,直到启动h2o上下文的行&#34; H2OContext h2oContext = H2OContext.getOrCreate(ctx.sc()。sc());&#34;

我添加到livy的配置参数如下:

    LivyClient client = new LivyClientBuilder().setURI(new URI(livyUrl)).setConf("spark.executor.instances", "9")
            .setConf("spark.driver.memory", "20g")
            .setConf("spark.driver.cores", "5")
            .setConf("spark.executor.memory", "16g") // memory per executor
            .setConf("spark.executor.cores", "5")
            .setConf("spark.yarn.executor.memoryOverhead", "7000")
            .setConf("spark.rdd.compress", "true")
            .setConf("spark.default.parallelism", "3000")
            .setConf("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
            .setConf("spark.driver.extraJavaOptions", "-XX:+UseG1GC -XX:MaxPermSize=10000m -Xss5000m")
            .setConf("spark.executor.extraJavaOptions", "-XX:+UseG1GC -XX:MaxPermSize=10000m -Xss5000m")
            .setConf("spark.shuffle.compress", "true")
            .setConf("spark.shuffle.spill.compress", "true")
            .setConf("spark.kryoserializer.buffer.max", "1g")
            .setConf("spark.shuffle.io.maxRetries", "6")
            .setConf("spark.sql.shuffle.partitions", "7000")
            .setConf("spark.sql.files.maxPartitionBytes", "5000")
            .setConf("spark.driver.extraClassPath",
                    "/usr/hdp/2.6.2.0-205/phoenix/phoenix-4.7.0.2.6.2.0-205-client.jar:/usr/hdp/2.6.2.0-205/phoenix/phoenix-4.7.0.2.6.2.0-205-server.jar:/usr/hdp/2.6.2.0-205/phoenix/lib/phoenix-spark-4.7.0.2.6.2.0-205.jar:/usr/hdp/2.6.2.0-205/hbase/lib/hbase-common-1.1.2.2.6.2.0-205.jar:/usr/hdp/2.6.2.0-205/hbase/lib/hbase-server-1.1.2.2.6.2.0-205.jar:/usr/hdp/2.6.2.0-205/hbase/lib/hbase-server-1.1.2.2.6.2.0-205")
            .setConf("spark.executor.extraClassPath",
                    "/usr/hdp/2.6.2.0-205/phoenix/phoenix-4.7.0.2.6.2.0-205-client.jar:/usr/hdp/2.6.2.0-205/phoenix/phoenix-4.7.0.2.6.2.0-205-server.jar:/usr/hdp/2.6.2.0-205/phoenix/lib/phoenix-spark-4.7.0.2.6.2.0-205.jar:/usr/hdp/2.6.2.0-205/hbase/lib/hbase-common-1.1.2.2.6.2.0-205.jar:/usr/hdp/2.6.2.0-205/hbase/lib/hbase-server-1.1.2.2.6.2.0-205.jar:/usr/hdp/2.6.2.0-205/hbase/lib/hbase-server-1.1.2.2.6.2.0-205")
              .setConf("spark.ext.h2o.cluster.size", "-1")
              .setConf("spark.ext.h2o.cloud.timeout", "60000")
              .setConf("spark.ext.h2o.spreadrdd.retries", "-1")
              .setConf("spark.ext.h2o.nthreads", "-1")
              .setConf("spark.ext.h2o.disable.ga", "true")
              .setConf("spark.ext.h2o.dummy.rdd.mul.factor", "10")
              .setConf("spark.ext.h2o.fail.on.unsupported.spark.param", "false")
            .setConf("spark.cassandra.input.split.size_in_mb", "64")
            .setConf("spark.driver.maxResultSize", "3g")
            .setConf("spark.network.timeout", "1000s")
            .setConf("spark.executor.heartbeatInterval", "600s")
            .build();

我使用Spark 2.1.1在群集模式下运行HDP 2.6.2。

1 个答案:

答案 0 :(得分:2)

您使用的是Spark 2.1还是Spark 1.6?在问题的最开始,你指的是Spark 1.6,但是引用了Spark 2.1。我会假设它是2.1。

关于您的问题,您正在混合pom文件中的版本。您指定了H2O 3.14.0.7的依赖关系,但是您使用的是基于H2O 3.10.4.2的Sparkling Water 2.1.1。两个版本都需要不同版本的JODA库,这也是您看到上述错误的原因。

解决方案是在你的pom文件中指定闪烁的水依赖性。 H2O已经捆绑在苏打水中,你不应该明确指定它们。

您应该放入pom文件的依赖项是:

  • ai.h2o:sparkling-water-core_2.11:2.1.16
  • ai.h2o:sparkling-water-examples_2.11:2.1.16
  • no.priv.garshol.duke:duke:1.2

此外,建议使用最新的苏打水版本,如果Spark 2.1.x是Sparkling Water 2.1.16。

我们正在研究这个PR https://github.com/h2oai/sparkling-water/pull/352,这将简化这一点,而不是这3个依赖关系,你可以只指定一个超级依赖:

  • ai.h2o:sparkling-water-package_2.11:2.1.16