这是我的培训数据,我想预测' y'与X_data使用keras库。我在很长一段时间内都遇到了错误,我知道它的数据形状,但我已经停留了一段时间。希望你们能帮忙。
X_data =
0 [construction, materials, labour, charges, con...
1 [catering, catering, lunch]
2 [passenger, transport, local, transport, passe...
3 [goods, transport, road, transport, goods, inl...
4 [rental, rental, aircrafts]
5 [supporting, transport, cargo, handling, agenc...
6 [postal, courier, postal, courier, local, deli...
7 [electricity, charges, reimbursement, electric...
8 [facility, management, facility, management, p...
9 [leasing, leasing, aircrafts]
10 [professional, technical, business, selling, s...
11 [telecommunications, broadcasting, information...
12 [support, personnel, search, contract, tempora...
13 [maintenance, repair, installation, maintenanc...
14 [manufacturing, physical, inputs, owned, other...
15 [accommodation, hotel, accommodation, hotel, i...
16 [leasing, rental, leasing, renting, motor, veh...
17 [real, estate, rental, leasing, involving, pro...
18 [rental, transport, vehicles, rental, road, ve...
19 [cleaning, sanitary, pad, vending, machine]
20 [royalty, transfer, use, ip, intellectual, pro...
21 [legal, accounting, legal, accounting, legal, ...
22 [veterinary, clinic, health, care, relation, a...
23 [human, health, social, care, inpatient, medic...
Name: Data, dtype: object
这是我的训练预测器
y =
0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 10
16 2
17 10
18 2
19 2
20 10
21 10
22 10
23 10
我正在使用这个模型:
top_words = 5000
length= len(X_data)
embedding_vecor_length = 32
model = Sequential()
model.add(Embedding(embedding_vecor_length, top_words, input_length=length))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(X_data, y, epochs=3, batch_size=32)
ValueError: Error when checking input: expected embedding_8_input to have shape (None, 24) but got array with shape (24, 1)
在此模型中使用此数据有什么问题?我想预测' y'使用输入X_data?
答案 0 :(得分:3)
您需要将您的pandas数据帧转换为numpy数组,这些数组将变得粗糙,因此您需要填充它们。您还需要设置单词向量字典,因为您不能直接将单词传递到神经网络中。一些示例包括here,here和here。您需要在此处进行自己的研究,不可能对您提供的数据样本做很多事情
length = len(X_data)
是你有多少数据样本,keras不关心这个,它想知道你有多少单词作为输入,(每个单词都必须相同,这就是为什么填充已在前面说过)
所以您对网络的输入是您拥有的列数
#assuming you converted X_data correctly to numpy arrays and word vectors
model.add(Embedding(embedding_vecor_length, top_words, input_length=X_data.shape[1]))
您的分类值必须是二进制值。
from keras.utils import to_categorical
y = to_categorical(y)
你的上一个密集层现在是10,假设你有10个类别,并且正确的激活是softmax
的多重问题
model.add(Dense(10, activation='softmax'))
你的损失现在必须是categorical_crossentropy
,因为这是多类
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])