如何为n-gram训练朴素贝叶斯分类器(movie_reviews)

时间:2017-12-28 08:10:24

标签: python nlp classification nltk

以下是Naive Bayes Classifier模型的movie_reviews数据集上的unigram培训代码。我想通过考虑bigramtrigram模型来训练和分析其绩效。我们怎么做呢。

import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

def create_word_features(words):
    useful_words = [word for word in words if word not in stopwords.words("english")] 
    my_dict = dict([(word, True) for word in useful_words])
    return my_dict

pos_data = []
for fileid in movie_reviews.fileids('pos'):
    words = movie_reviews.words(fileid)
    pos_data.append((create_word_features(words), "positive"))    

neg_data = []
for fileid in movie_reviews.fileids('neg'):
    words = movie_reviews.words(fileid)
    neg_data.append((create_word_features(words), "negative")) 

train_set = pos_data[:800] + neg_data[:800]
test_set =  pos_data[800:] + neg_data[800:]

classifier = NaiveBayesClassifier.train(train_set)

accuracy = nltk.classify.util.accuracy(classifier, test_set)

1 个答案:

答案 0 :(得分:2)

只需更改您的增强功能

from nltk import ngrams

def create_ngram_features(words, n=2):
    ngram_vocab = ngrams(words, n)
    my_dict = dict([(ng, True) for ng in ngram_vocab])
    return my_dict

顺便说一句,如果你改变你的特征化使用一套用于你的禁用词列表并且只将它初始化一次,那么你的代码将会快得多。

stoplist = set(stopwords.words("english"))

def create_word_features(words):
    useful_words = [word for word in words if word not in stoplist] 
    my_dict = dict([(word, True) for word in useful_words])
    return my_dict

有人应该告诉NLTK人员将停用词列表转换为集合类型,因为它在技术上"一个独特的清单(即一套)。

>>> from nltk.corpus import stopwords
>>> type(stopwords.words('english'))
<class 'list'>
>>> type(set(stopwords.words('english')))
<class 'set'>

为了基准测试的乐趣

import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import ngrams

def create_ngram_features(words, n=2):
    ngram_vocab = ngrams(words, n)
    my_dict = dict([(ng, True) for ng in ngram_vocab])
    return my_dict

for n in [1,2,3,4,5]:
    pos_data = []
    for fileid in movie_reviews.fileids('pos'):
        words = movie_reviews.words(fileid)
        pos_data.append((create_ngram_features(words, n), "positive"))    

    neg_data = []
    for fileid in movie_reviews.fileids('neg'):
        words = movie_reviews.words(fileid)
        neg_data.append((create_ngram_features(words, n), "negative")) 

    train_set = pos_data[:800] + neg_data[:800]
    test_set =  pos_data[800:] + neg_data[800:]

    classifier = NaiveBayesClassifier.train(train_set)

    accuracy = nltk.classify.util.accuracy(classifier, test_set)
    print(str(n)+'-gram accuracy:', accuracy)

[OUT]:

1-gram accuracy: 0.735
2-gram accuracy: 0.7625
3-gram accuracy: 0.8275
4-gram accuracy: 0.8125
5-gram accuracy: 0.74

原始代码的准确度为0.725。

使用更多ngrams订单

import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import everygrams

def create_ngram_features(words, n=2):
    ngram_vocab = everygrams(words, 1, n)
    my_dict = dict([(ng, True) for ng in ngram_vocab])
    return my_dict

for n in range(1,6):
    pos_data = []
    for fileid in movie_reviews.fileids('pos'):
        words = movie_reviews.words(fileid)
        pos_data.append((create_ngram_features(words, n), "positive"))    

    neg_data = []
    for fileid in movie_reviews.fileids('neg'):
        words = movie_reviews.words(fileid)
        neg_data.append((create_ngram_features(words, n), "negative")) 

    train_set = pos_data[:800] + neg_data[:800]
    test_set =  pos_data[800:] + neg_data[800:]
    classifier = NaiveBayesClassifier.train(train_set)

    accuracy = nltk.classify.util.accuracy(classifier, test_set)
    print('1-gram to', str(n)+'-gram accuracy:', accuracy)

[OUT]:

1-gram to 1-gram accuracy: 0.735
1-gram to 2-gram accuracy: 0.7625
1-gram to 3-gram accuracy: 0.7875
1-gram to 4-gram accuracy: 0.8
1-gram to 5-gram accuracy: 0.82