我使用标签编码器
将我的分类数据标记为数字数据data['Resi'] = LabelEncoder().fit_transform(data['Resi'])
但是当我尝试使用
查找内部映射方式时list(LabelEncoder.inverse_transform(data['Resi']))
我收到以下错误
TypeError Traceback (most recent call last)
<ipython-input-67-419ab6db89e2> in <module>()
----> 1 list(LabelEncoder.inverse_transform(data['Resi']))
TypeError: inverse_transform() missing 1 required positional argument: 'y'
如何解决此问题
示例数据
Resi
IP
IP
IP
IP
IP
IE
IP
IP
IP
IP
IP
IPD
IE
IE
IP
IE
IP
IP
IP
答案 0 :(得分:2)
您可以查看label encoding:
>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])
并为您的解决方案:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder().fit(data['Resi'])
data['Resi'] = le.transform(data['Resi'])
print (data.tail())
Resi
14 1
15 0
16 1
17 1
18 1
L = list(le.inverse_transform(data['Resi']))
print (L)
['IP', 'IP', 'IP', 'IP', 'IP', 'IE', 'IP', 'IP', 'IP',
'IP', 'IP', 'IPD', 'IE', 'IE', 'IP', 'IE', 'IP', 'IP', 'IP']
编辑:
d = dict(zip(le.classes_, le.transform(le.classes_)))
print (d)
{'IE': 0, 'IPD': 2, 'IP': 1}
答案 1 :(得分:1)
您没有将LabelEncoder()对象存储在任何位置。你需要像这样保存它:
le = LabelEncoder()
然后拨打fit()
或transform()
。
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
ls = ['IP', 'IP', 'IP', 'IP', 'IP', 'IE', 'IP', 'IP', 'IP', 'IP', 'IP', 'IPD', 'IE', 'IE', 'IP', 'IE', 'IP', 'IP', 'IP']
data = pd.DataFrame(np.array(ls).reshape(-1,1), columns=['Resi'])
le = LabelEncoder()
data['Resi'] = le.fit_transform(data['Resi'])
df['resi'] = LabelEncoder().fit_transform(df['resi'])
list(le.inverse_transform(data['Resi']))
Out:
['IP',
'IP',
'IP',
'IP',
'IP',
'IE',
'IP',
'IP',
'IP',
'IP',
'IP',
'IPD',
'IE',
'IE',
'IP',
'IE',
'IP',
'IP',
'IP']
答案 2 :(得分:0)
encoder = LabelEncoder()
encoder.inverse_transform(data['Resi'])