我有一个数据框,每行都是一个观察点,我有两列:
group
成员资格outcome
。 我尝试创建一个新变量outcome_change
,如果outcome
与给定group
中的所有观察值不相同,则值为1,否则为0。 / p>
以下代码(dat
)中显示的是我拥有的数据示例。同时,dat_out1
显示我在没有NA
值的情况下查找要生成的代码。 dat_out2
是相同的,只是它表示当组值中缺少值时会出现相同的结果。
肯定有一些与dplyr :: group_by()有关吗?我不知道如何在小组内进行这些比较。
# Input (2 groups: 1 with identical values of outcome
# in the group (group a) and 1 with differing values of
# outcome in the group (group b)
dat <- data.frame(group = c("a","a","a","b","b","b"),
outcome = c(1,1,1,3,2,2))
# Output 1: add a variable for all observations belonging to
# a group where the outcome changed within each group
dat_out1 <- data.frame(group = c("a","a","a","b","b","b"),
outcome = c(1,1,1,3,2,2),
outcome_change = c(0,0,0,1,1,1))
# Output 2: same as Output 1, but able to ignore NA values
dat_out2 <- data.frame(group = c("a","a","a","b","b","b"),
outcome = c(1,1,NA,3,2,NA),
outcome_change = c(0,0,0,1,1,1))
答案 0 :(得分:3)
这是一个方法:
library(tidyverse)
dat %>%
group_by(group) %>%
mutate(outcome_change = ifelse(length(unique(outcome[!is.na(outcome)])) > 1, 1, 0))
#output
# A tibble: 6 x 3
# Groups: group [2]
group outcome outcome_change
<fctr> <dbl> <dbl>
1 a 1 0
2 a 1 0
3 a 1 0
4 b 3 1
5 b 2 1
6 b 2 1
dat2
# A tibble: 6 x 3
# Groups: group [2]
group outcome outcome_change
<fctr> <dbl> <dbl>
1 a 1 0
2 a 1 0
3 a NA 0
4 b 3 1
5 b 2 1
6 b NA 1
答案 1 :(得分:1)
library(dplyr)
dat <- data.frame(group = c("a","a","a","b","b","b"),
outcome = c(1,1,1,3,2,2))
dat2 <- data.frame(group = c("a","a","a","b","b","b"),
outcome = c(1,1,NA,3,2,NA))
dat_out1 <- dat %>% group_by(group) %>%
mutate(outcome_change = ifelse(min(outcome) == max(outcome), 0, 1))
dat_out2 <- dat2 %>% group_by(group) %>%
mutate(outcome_change = ifelse(min(outcome, na.rm = TRUE) == max(outcome, na.rm = TRUE), 0, 1))
答案 2 :(得分:1)
以下是使用data.table
library(data.table)
setDT(dat1)[, outcome_change := as.integer(uniqueN(outcome[!is.na(outcome)])>1), group]
dat1
# group outcome outcome_change
#1: a 1 0
#2: a 1 0
#3: a 1 0
#4: b 3 1
#5: b 2 1
#6: b 2 1
如果我们将相同的内容应用于'dat2'
dat2
# group outcome outcome_change2
#1: a 1 0
#2: a 1 0
#3: a NA 0
#4: b 3 1
#5: b 2 1
#6: b NA 1