我有一个数据框(df),这只是一个sapmle:
group value
1 12.1
1 10.3
1 NA
1 11.0
1 13.5
2 11.7
2 NA
2 10.4
2 9.7
即,
df<-data.frame(group=c(1,1,1,1,1,2,2,2,2), value=c(12.1, 10.3, NA, 11.0, 13.5, 11.7, NA, 10.4, 9.7))
所需的输出是:
group value order
1 12.1 3
1 10.3 1
1 NA NA
1 11.0 2
1 13.5 4
2 11.7 3
2 NA NA
2 10.4 2
2 9.7 1
即,我想找到
我怎么能用R做到这一点?我会很高兴得到任何帮助非常感谢。
答案 0 :(得分:2)
我们可以使用ave
中的base R
来创建&#34;值&#34;的rank
列(&#34; order1&#34;) by&#34; group&#34;。如果我们需要NAs
对应NA
&#34;值&#34;列,这可以完成(df$order[is.na(..)]
)
df$order1 <- with(df, ave(value, group, FUN=rank))
df$order1[is.na(df$value)] <- NA
或使用data.table
library(data.table)
setDT(df)[, order1:=rank(value)* NA^(is.na(value)), by = group][]
# group value order1
#1: 1 12.1 3
#2: 1 10.3 1
#3: 1 NA NA
#4: 1 11.0 2
#5: 1 13.5 4
#6: 2 11.7 3
#7: 2 NA NA
#8: 2 10.4 2
#9: 2 9.7 1
答案 1 :(得分:1)
您可以一次使用应用于每个组的rank()
功能来获得所需的结果。我这样做的解决方案是编写一个小辅助函数并在for
循环中调用该函数。我确定使用各种R库还有其他更优雅的方法,但这里只是使用基本R的解决方案。
df <- read.table('~/Desktop/stack_overflow28283818.csv', sep = ',', header = T)
#helper function
rankByGroup <- function(df = NULL, grp = 1)
{
rank(df[df$group == grp, 'value'])
}
# Remove NAs
df.na <- df[is.na(df$value),]
df.0 <- df[!is.na(df$value),]
# For loop over groups to list the ranks
for(grp in unique(df.0$group))
{
df.0[df.0$group == grp, 'order'] <- rankByGroup(df.0, grp)
print(grp)
}
# Append NAs
df.na$order <- NA
df.out <- rbind(df.0,df.na)
#re-sort for ordering given in OP (probably not really required)
df.out <- df.out[order(as.numeric(rownames(df.out))),]
这准确地给出了所需的输出,但我怀疑在您的应用中可能不需要在数据中保持NA的位置。
> df.out
group value order
1 1 12.1 3
2 1 10.3 1
3 1 NA NA
4 1 11.0 2
5 1 13.5 4
6 2 11.7 3
7 2 NA NA
8 2 10.4 2
9 2 9.7 1