我正在尝试在tensorflow中实现倒角距离。
但是,我的代码将输入视为numpy数组。要将numpy转换为张量,我们需要运行一个会话,但该过程已经在另一个会话中。我认为两个会话不能并行运行。
那么,有没有人可以帮助我在tensorflow中实现倒角距离或帮助我解决两个同步会话的问题?
我的代码是:
def chamfer_distance(array1,array2):
# final = 0
# final = tf.cast(final,tf.float32)
batch_size = array1.get_shape()[0].value
num_point = array1.get_shape()[1].value
sess = tf.Session()
arr1,arr2 = sess.run([array1,array2])
del sess
dist = 0
for i in range(batch_size):
tree1 = KDTree(arr1[i], leafsize=num_point+1)
tree2 = KDTree(arr2[i], leafsize=num_point+1)
distances1, _ = tree1.query(arr2[i])
distances2, _ = tree2.query(arr1[i])
distances1 = tf.convert_to_tensor(distances1)
distances2 = tf.convert_to_tensor(distances2)
av_dist1 = tf.reduce_mean(distances1)
av_dist2 = tf.reduce_mean(distances2)
dist = dist + (av_dist1+av_dist2)/batch_size
return dist
答案 0 :(得分:1)
我已经实现了倒角距离的TF版本:
def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances
def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances
def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2
def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist
出于验证目的,我还实现了sklearn版本:
def chamfer_distance_sklearn(array1,array2):
batch_size, num_point = array1.shape[:2]
dist = 0
for i in range(batch_size):
tree1 = KDTree(array1[i], leaf_size=num_point+1)
tree2 = KDTree(array2[i], leaf_size=num_point+1)
distances1, _ = tree1.query(array2[i])
distances2, _ = tree2.query(array1[i])
av_dist1 = np.mean(distances1)
av_dist2 = np.mean(distances2)
dist = dist + (av_dist1+av_dist2)/batch_size
return dist
还有一个numpy版本:
def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = LA.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances
def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist
您可以使用以下脚本验证结果:
batch_size = 8
num_point = 20
num_features = 4
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print('sklearn: ', chamfer_distance_sklearn(array1, array2))
print('numpy: ', chamfer_distance_numpy(array1, array2))
array1_tf = tf.constant(array1, dtype=tf.float64)
array2_tf = tf.constant(array2, dtype=tf.float64)
dist_tf = chamfer_distance_tf(array1_tf, array2_tf)
with tf.Session() as sess:
print('tf: ', sess.run(dist_tf))