这可能非常简单,但如何使用R解决x的以下等式? X应该是一个实数。
((4*x)^2+(2*x)^2+(1*x)^2+(0.5*x)^2+0.25)*((1 - 0.167)/0.167) = 1
答案 0 :(得分:2)
简短的回答是这个多项式在实数集中没有根, 你可以在R:
的帮助下分析出来> #((4*x)^2+(2*x)^2+(1*x)^2+(0.5*x)^2+0.25)*((1 - 0.167)/0.167) = 1
>
> # first add up your coefficients
> coefs <- c(16 + 4 + 1+ .25 , .25)
> coefs
[1] 21.25 0.25
>
> # apply the second product
> coefs <- (coefs - 0.167*coefs)/0.167
> coefs
[1] 105.995509 1.247006
>
> # move the one from one side to another
>
> coefs <- coefs - c(0,1)
> coefs
[1] 105.995509 0.247006
>
> #106*x^2 + 1/4 = 0 has no solution in the set of real number
答案 1 :(得分:0)
您也可以考虑使用Ryacas
来处理/解决基于计算机代数系统yacas的接口的符号表达式。当然,与例如Maple相比,当涉及到更高级的功能时,yacas的性能是有限的,但是,在你的情况下,它可以正常工作。
#Ryacas solves the equation and shows that there is only a complex solution
library("Ryacas")
yacas("Solve(((4*x)^2+(2*x)^2+(1*x)^2+(0.5*x)^2+0.25)*((1 - 0.167)/0.167) == 1, x)")
# expression(list(x == complex_cartesian(0, root(0.00688875/2.95610875, 2)),
# x == complex_cartesian(0, -root(0.00688875/2.95610875, 2))))