我有一个数据框,在八个月内有四个栖息地。每个月从每个栖息地收集十个样本。计算每个样品中物种的个体数量。以下代码生成类似结构的较小数据框。
for (int a = 1; a <= 100; a++) {
if (a % 5 == 0) {
println(a / 5);
} else if (a % 12 == 0) {
println(a / 12);
} else {
println(a);
}
}
我想在所有采样的物种中按月总计个体总数。我正在使用# Pseudo data
Habitat <- factor(c(rep("Dry",6), rep("Wet",6)), levels = c("Dry","Wet"))
Month <- factor(rep(c(rep("Jan",2), rep("Feb",2), rep("Mar",2)),2), levels=c("Jan","Feb","Mar"))
Sample <- rep(c(1,2),6)
Species1 <- rpois(12,6)
Species2 <- rpois(12,6)
Species3 <- rpois(12,6)
df <- data.frame(Habitat,Month, Sample, Species1, Species2, Species3)
(首选),但我愿意接受其他建议。
我最接近的是将每列的总和相加,如下所示。
ddply
这有效,但我想知道是否有一种通用的方法来处理具有“未知”物种数量的案例。也就是说,第一个物种总是从第4列开始,但最后一个物种可以在第10或第42列。我不想将实际物种名称硬编码到摘要函数中。请注意,物种名称差别很大,如Doryflav和Pheibica。
答案 0 :(得分:3)
这是data.table
的另一个解决方案,无需知道“Species”列的名称:
library(data.table)
DT = melt(setDT(df), id.vars = c("Habitat", "Month", "Sample"))
DT[, .(tot_by_mon=sum(value)), by = "Month"]
或者如果你想要它紧凑,这里是一个单行:
melt(setDT(df), 1:3)[, .(tot_by_mon=sum(value)), by = "Month"]
<强>结果:强>
Month tot_by_mon
1: Jan 90
2: Feb 81
3: Mar 70
数据(设置种子以使示例可重现)
set.seed(123)
Habitat <- factor(c(rep("Dry",6), rep("Wet",6)), levels = c("Dry","Wet"))
Month <- factor(rep(c(rep("Jan",2), rep("Feb",2), rep("Mar",2)),2), levels=c("Jan","Feb","Mar"))
Sample <- rep(c(1,2),6)
Species1 <- rpois(12,6)
Species2 <- rpois(12,6)
Species3 <- rpois(12,6)
df <- data.frame(Habitat,Month, Sample, Species1, Species2, Species3)
答案 1 :(得分:3)
与@ useR对data.table&#39; s melt
的回答类似,您可以使用tidyr重塑gather
:
library(tidyr)
library(dplyr)
gather(df, Species, Value, matches("Species")) %>%
group_by(Month) %>% summarise(z = sum(Value))
# A tibble: 3 x 2
Month z
<fctr> <int>
1 Jan 90
2 Feb 81
3 Mar 70
如果您知道按位置而不是模式的列,则匹配&#34; ...
gather(df, Species, Value, -(1:3)) %>%
group_by(Month) %>% summarise(z = sum(Value))
(使用@ akrun&#39; s set.seed(123)
示例数据显示结果。)
答案 2 :(得分:2)
假设Species
的所有列都以Species
开头,您可以使用group_by %>% do
按前缀和总和选择它们:
library(tidyverse)
df %>%
group_by(Month) %>%
do(tot_by_mon = sum(select(., starts_with('Species')))) %>%
unnest()
# A tibble: 3 x 2
# Month tot_by_mon
# <fctr> <int>
#1 Jan 63
#2 Feb 67
#3 Mar 58
如果列名不遵循模式,则可以按列位置进行选择,例如,如果Species列从第4行到数据框末尾:
df %>%
group_by(Month) %>%
do(tot_by_mon = sum(select(., 4:ncol(.)))) %>%
unnest()
# A tibble: 3 x 2
# Month tot_by_mon
# <fctr> <int>
#1 Jan 63
#2 Feb 67
#3 Mar 58
答案 3 :(得分:2)
以下是var userTimeline = [];
var params = {
screen_name: "ZodiacFacts"
};
cb.__call('statuses_userTimeline', params, function (reply, rate, error) {
userTimeline = reply.filter(function (status) {
return /^Aquarius/i.test(status);
});
console.log(userTimeline);
});
的另一个选项,但没有重新定义为&#39; long&#39;格式
data.table
或者使用library(data.table)
setDT(df)[, .(tot_by_mon = Reduce(`+`, lapply(.SD, sum))), Month,
.SDcols = Species1:Species3]
# Month tot_by_mon
#1: Jan 90
#2: Feb 81
#3: Mar 70
,我们也可以使用效率高的tidyverse
函数
map
library(dplyr)
library(purrr)
df %>%
group_by(Month) %>%
nest(starts_with('Species')) %>%
mutate(tot_by_mon = map_int(data, ~sum(unlist(.x)))) %>%
select(-data)
# A tibble: 3 x 2
# Month tot_by_mon
# <fctr> <int>
#1 Jan 90
#2 Feb 81
#3 Mar 70