是否可以在子组中获取相应列的第一个值。
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.{Window, WindowSpec}
object tmp {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local").getOrCreate()
import spark.implicits._
val input = Seq(
(1235, 1, 1101, 0),
(1235, 2, 1102, 0),
(1235, 3, 1103, 1),
(1235, 4, 1104, 1),
(1235, 5, 1105, 0),
(1235, 6, 1106, 0),
(1235, 7, 1107, 1),
(1235, 8, 1108, 1),
(1235, 9, 1109, 1),
(1235, 10, 1110, 0),
(1235, 11, 1111, 0)
).toDF("SERVICE_ID", "COUNTER", "EVENT_ID", "FLAG")
lazy val window: WindowSpec = Window.partitionBy("SERVICE_ID").orderBy("COUNTER")
val firsts = input.withColumn("first_value", first("EVENT_ID", ignoreNulls = true).over(window.rangeBetween(Long.MinValue, Long.MaxValue)))
firsts.orderBy("SERVICE_ID", "COUNTER").show()
}
}
我想要的输出。
基于FLAG = 1的列EVENT_ID的第一个(或上一个)值 和 基于FLAG = 1的列EVENT_ID的最后(或下一个)值 按计数器
排序的SERVICE_ID分区+----------+-------+--------+----+-----------+-----------+
|SERVICE_ID|COUNTER|EVENT_ID|FLAG|first_value|last_value|
+----------+-------+--------+----+-----------+-----------+
| 1235| 1| 1101| 0| 0| 1103|
| 1235| 2| 1102| 0| 0| 1103|
| 1235| 3| 1103| 1| 0| 1106|
| 1235| 4| 1104| 0| 1103| 1106|
| 1235| 5| 1105| 0| 1103| 1106|
| 1235| 6| 1106| 1| 0| 1108|
| 1235| 7| 1107| 0| 1106| 1108|
| 1235| 8| 1108| 1| 0| 1109|
| 1235| 9| 1109| 1| 0| 1110|
| 1235| 10| 1110| 1| 0| 0|
| 1235| 11| 1111| 0| 1110| 0|
| 1235| 12| 1112| 0| 1110| 0|
+----------+-------+--------+----+-----------+-----------+
答案 0 :(得分:1)
首先,需要将数据帧组成组。一个新的小组每次都会在" TIME"为了做到这一点,首先添加一个列" ID"到数据帧:
lazy val window: WindowSpec = Window.partitionBy("SERVICE_ID").orderBy("COUNTER")
val df_flag = input.filter($"FLAG" === 1)
.withColumn("ID", row_number().over(window))
val df_other = input.filter($"FLAG" =!= 1)
.withColumn("ID", lit(0))
// Create a group for each flag event
val df = df_flag.union(df_other)
.withColumn("ID", max("ID").over(window.rowsBetween(Long.MinValue, 0)))
.cache()
df.show()
给出:
+----------+-------+--------+----+---+
|SERVICE_ID|COUNTER|EVENT_ID|FLAG| ID|
+----------+-------+--------+----+---+
| 1235| 1| 1111| 1| 1|
| 1235| 2| 1112| 0| 1|
| 1235| 3| 1114| 0| 1|
| 1235| 4| 2221| 1| 2|
| 1235| 5| 2225| 0| 2|
| 1235| 6| 2226| 0| 2|
| 1235| 7| 2227| 1| 3|
+----------+-------+--------+----+---+
现在我们有一个分隔事件的列,我们需要添加正确的" EVENT_ID" (重命名为" first_value")到每个事件。除了" first_value"之外,计算并添加第二列" last_value",这是下一个标记事件的id。
val df_event = df.filter($"FLAG" === 1)
.select("EVENT_ID", "ID", "SERVICE_ID", "COUNTER")
.withColumnRenamed("EVENT_ID", "first_value")
.withColumn("last_value", lead($"first_value",1,0).over(window))
.drop("COUNTER")
val df_final = df.join(df_event, Seq("ID", "SERVICE_ID"))
.drop("ID")
.withColumn("first_value", when($"FLAG" === 1, lit(0)).otherwise($"first_value"))
df_final.show()
告诉我们:
+----------+-------+--------+----+-----------+----------+
|SERVICE_ID|COUNTER|EVENT_ID|FLAG|first_value|last_value|
+----------+-------+--------+----+-----------+----------+
| 1235| 1| 1111| 1| 0| 2221|
| 1235| 2| 1112| 0| 1111| 2221|
| 1235| 3| 1114| 0| 1111| 2221|
| 1235| 4| 2221| 1| 0| 2227|
| 1235| 5| 2225| 0| 2221| 2227|
| 1235| 6| 2226| 0| 2221| 2227|
| 1235| 7| 2227| 1| 0| 0|
+----------+-------+--------+----+-----------+----------+
答案 1 :(得分:0)
可以分两步解决:
可以缩短为可见性而包含的某些列重命名:
val window = Window.partitionBy("SERVICE_ID").orderBy("COUNTER").rowsBetween(Window.currentRow, 1)
val eventRangeDF = input.where($"FLAG" === 1)
.withColumn("RANGE_END", max($"COUNTER").over(window))
.withColumnRenamed("COUNTER", "RANGE_START")
.select("SERVICE_ID", "EVENT_ID", "RANGE_START", "RANGE_END")
eventRangeDF.show(false)
val result = input.where($"FLAG" === 0).as("i").join(eventRangeDF.as("e"),
expr("e.SERVICE_ID=i.SERVICE_ID And i.COUNTER>e.RANGE_START and i.COUNTER<e.RANGE_END"))
.select($"i.SERVICE_ID", $"i.COUNTER", $"i.EVENT_ID", $"i.FLAG", $"e.EVENT_ID".alias("first_value"))
// include FLAG=1
.union(input.where($"FLAG" === 1).select($"SERVICE_ID", $"COUNTER", $"EVENT_ID", $"FLAG", lit(0).alias("first_value")))
result.sort("COUNTER").show(false)
输出:
+----------+--------+-----------+---------+
|SERVICE_ID|EVENT_ID|RANGE_START|RANGE_END|
+----------+--------+-----------+---------+
|1235 |1111 |1 |4 |
|1235 |2221 |4 |7 |
|1235 |2227 |7 |7 |
+----------+--------+-----------+---------+
+----------+-------+--------+----+-----------+
|SERVICE_ID|COUNTER|EVENT_ID|FLAG|first_value|
+----------+-------+--------+----+-----------+
|1235 |1 |1111 |1 |0 |
|1235 |2 |1112 |0 |1111 |
|1235 |3 |1114 |0 |1111 |
|1235 |4 |2221 |1 |0 |
|1235 |5 |2225 |0 |2221 |
|1235 |6 |2226 |0 |2221 |
|1235 |7 |2227 |1 |0 |
+----------+-------+--------+----+-----------+