计算公式(n-1)
中的自由度与t.test
中执行的自由度之间有什么区别?
例如:
我有两个小组1.(1.7,1,1)
和2.(1.5,1,1)
df = 4 (n-1)
-----------------
df in t.test = 2.9186
t = -9.1357, df = 2.9186, p-value = 0.003092
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-6.611410 -3.154978
sample estimates:
mean of x mean of y
1.236430 6.119624
为什么他们不同?
答案 0 :(得分:0)
这取决于方差是否相等的假设
t.test(v1, v2, var.equal = TRUE)
Two Sample t-test
data: v1 and v2
t = 0.2325, df = 4, p-value = 0.8276
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.7294628 0.8627961
sample estimates:
mean of x mean of y
1.233333 1.166667
默认情况下,它使用var.equal = FALSE
t.test(v1, v2)
Welch Two Sample t-test
data: v1 and v2
t = 0.2325, df = 3.6193, p-value = 0.8287
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.7636018 0.8969351
sample estimates:
mean of x mean of y
1.233333 1.166667
并使用'Welch'调整来计算自由度数
v1 <- c(1.7, 1, 1)
v2 <- c(1.5, 1, 1)