我使用CNN创建程序,我需要插入192个通道的矩阵。此矩阵(宽度:32,高度:240,通道:192,类型:uchar)存储在Mat(OpenCV)中。如何将Mat转换为dlib矩阵?
std::vector<dlib::matrix<?>> training_data;
std::vector<unsigned long> training_labels;
...
Mat mat = loader.getMat();
? convert ?
training_data.push_back(dlib_matrix);
...
trainer.train(training_data, training_labels);
答案 0 :(得分:1)
您可以使用cv_image从Mat转换为dlib图像,使用dlib::toMat将dlib转换为Mat。
//Mat to dlib image
cv_image<bgr_pixel> dlib_img(mat);
修改强>
据我所知,对于n频道,您可以提供自定义pixel_traits
。例如,对于5通道Mat图像,您可以执行以下操作:
namespace dlib{
struct custom_pixel
{
custom_pixel (
) {}
custom_pixel (
unsigned char c1_,
unsigned char c2_,
unsigned char c3_,
unsigned char c4_,
unsigned char c5_
) : c1(c1_), c2(c2_), c3(c3_), c4(c4_), c5(c5_) {}
unsigned char c1;
unsigned char c2;
unsigned char c3;
unsigned char c4;
unsigned char c5;
};
template <>
struct pixel_traits<custom_pixel>
{
constexpr static bool rgb = false;
constexpr static bool rgb_alpha = false;
constexpr static bool grayscale = false;
constexpr static bool hsi = false;
constexpr static bool lab = false;
enum { num = 5};// provide number of channels here
typedef unsigned char basic_pixel_type; //provide channel depth here
static basic_pixel_type min() { return 0;}
static basic_pixel_type max() { return 255;}
constexpr static bool is_unsigned = true;
constexpr static bool has_alpha = false;
};
}
然后从Mat转换为dlib,反之亦然:
int main(int argc, char** argv)
{
// from opencv to dlib
Mat mat_img = Mat::zeros(3, 3, CV_8UC(5));
cv_image<custom_pixel> dlib_img(mat_img);
//from dlib to opencv
Mat mat_img_new = dlib::toMat(dlib_img);
}