我的输入数据
SL.NO Name
1 KING BATA
2
3
4 AGS
5 FORMULA GROWTH
6
7 Bag
输出
SL.NO Name Value
1 KING BATA Present
2 Not Present
3 Not Present
4 AGS Present
5 FORMULA GROWTH Present
6 Not Present
7 Bag Present
如何处理pandas中的null,blank和垃圾值?
答案 0 :(得分:1)
使用numpy.where
:
#If missing value is NaN
df['Value'] = np.where(df['Name'].isnull(), 'Present', 'Not Present')
或者:
#If missing value is empty string
df['Value'] = np.where(df['Name'].eq(''), 'Present', 'Not Present')
答案 1 :(得分:1)
有趣method(){
List<int> list1 = new List<int>{ 1, 2, 3, 4, 5, 6};
List<int> list2 = new List<int>{ 1, 2, 3 };
List<int> list3 = new List<int>{ 1, 2 };
var a = new A();
a.BList = new List<B>{ new B { Key = "b1", IntegerList = list1,
new B { Key = "b2", IntegerList = list2
new B { Key = "b3", IntegerList = list3 }
}
:
pd.Categorical
顺便提一下,无论您的缺失值是df
SL.NO Name
0 1 KING BATA
1 2
2 3
3 4 AGS
4 5 FORMULA GROWTH
5 6
6 7 Bag
df['Value'] = pd.Categorical.from_codes(df.Name.astype(bool),
categories=['Not Present', 'Present'])
df
SL.NO Name Value
0 1 KING BATA Present
1 2 Not Present
2 3 Not Present
3 4 AGS Present
4 5 FORMULA GROWTH Present
5 6 Not Present
6 7 Bag Present
,NaN
还是None
,都可以使用,因为''
利用了这些错误的优缺点值:
astype(bool)