熊猫根据另一列中的值创建新列,如果为False,则返回新列的先前值

时间:2018-07-13 15:32:29

标签: python pandas

这是我已经苦苦挣扎了一段时间的Python熊猫问题。可以说我有一个简单的数据帧df,其中df ['a'] = [1,2,3,1,4,6]和df ['b'] = [10,20,30,40,50,60] 。我想创建第三列'c',如果df ['a'] == 1,则df ['c'] = df ['b']。如果为假,则df ['c'] = df ['c']的先前值。我尝试使用np.where来实现此目的,但是结果却不是我所期望的。有什么建议吗?

df = pd.DataFrame()
df['a'] = [1,2,3,1,4,6]
df['b'] = [10,20,30,40,50,60]
df['c'] = np.nan
df['c'] = np.where(df['a'] == 1, df['b'], df['c'].shift(1))

结果是:

   a   b     c
0  1  10  10.0
1  2  20   NaN
2  3  30   NaN
3  1  40  40.0
4  4  50   NaN
5  6  60   NaN

我原本期望:

   a   b     c
0  1  10  10.0
1  2  20  10.0
2  3  30  10.0
3  1  40  40.0
4  4  50  40.0
5  6  60  40.0

1 个答案:

答案 0 :(得分:2)

尝试一下:

df.c.ffill(inplace=True)

输出:

   a   b     c
0  1  10  10.0
1  2  20  10.0
2  3  30  10.0
3  1  40  40.0
4  4  50  40.0
5  6  60  40.0