向客户端提供一个名为Scheduler
的类,该类以特定间隔调度警报。要做到这一点,我在课程中有一个方法setAlarm
,它会向优先队列添加警报,并执行notify()
让Timer
程序知道它是时候醒来并处理队列顶部的内容。
以下是基本实现的示例 -
class Scheduler {
synchronized public void setAlarm(Date date) {
notify();
}
synchronized private void alarmTimer() {
while (true) {
wait();
System.out.println("Alarm Triggered");
}
}
现在我需要Timer
程序在另一个线程上运行,因为它会一直等到收到通知或者时间结束。但是客户端应该不知道有两个线程。就客户而言,它只会执行schedulerInstance.setAlarm(myDate)
并且应该处理它。
因此Scheduler
必须为alarmTimer()
创建一个单独的线程。如何在仍然引用正确的this
对象的同时从这个新线程调用alarmTimer?处理我希望多个线程维持对原始Scheduler
实例的引用以便wait()
和notify()
工作的情况的正确方法是什么?
答案 0 :(得分:0)
这是一种方法:
this
上比在方法级别上同步 class Scheduler extends java.lang.Thread {
public void setAlarm(Date date) {
synchronized(this) {
this.notify();
}
}
private void alarmTimer() {
this.start();
}
@Override
public void run() {
synchronized(this) {
while (true) {
this.wait();
System.out.println("Alarm Triggered");
}
}
}
}
... anyObject.wait()
其他所有方法都是可以想象的,您可以在报警开始和停止之间保持对等待对象的参考。 (anyObject.notify()
和import tensorflow as tf
import numpy as np
from sklearn import cross_validation
import pandas as pd
np.random.seed(20160612)
tf.set_random_seed(20160612)
#this is input data, data is a 7x86594 and label is a 5x86594
data2 = pd.read_csv('rawdata.csv', sep=',', header=None)
data = np.array(data2)
label2=pd.read_csv('class.csv', sep='\t', header=None)
label=np.array(label2)
train_x,test_x,train_t,test_t=cross_validation.train_test_split(data,label,test_size=0.1,random_state=None)
#this is supposed to be neural size in hidden layer
num_units = 15
x = tf.placeholder(tf.float32, [None, 7])
t = tf.placeholder(tf.float32, [None, 5])
w1 = tf.Variable(tf.truncated_normal([7, num_units], mean=0.0, stddev=0.05))
b1 = tf.Variable(tf.zeros([num_units]))
hidden1 = tf.nn.relu(tf.matmul(x, w1) + b1)
w0 = tf.Variable(tf.zeros([num_units, 5]))
b0 = tf.Variable(tf.zeros([5]))
p = tf.nn.softmax(tf.matmul(hidden1, w0) + b0)
loss = -tf.reduce_sum(t * tf.log(tf.clip_by_value(p,1e-10,1.0)))
train_step = tf.train.AdamOptimizer().minimize(loss)
correct_prediction = tf.equal(tf.argmax(p, 1), tf.argmax(t, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
#this is how i think batching is
batch_size = 100
for j in range(0, 86594, batch_size):
xs,ys= train_x[j:j+batch_size], train_t[j:j+batch_size]
i = 0
for _ in range(4000):
i += 1
sess.run(train_step, feed_dict={x: xs, t: ys})
if i % 100 == 0:
loss_val, acc_val = sess.run([loss, accuracy],feed_dict={x:test_x, t: test_t})
print ('Step: %d, Loss: %f, Accuracy: %f'% (i, loss_val, acc_val))
)