计算张量中元素的邻居

时间:2017-10-19 15:03:04

标签: tensorflow tensor

我认为我有以下张量

r = 8
c = 12
n = 2
a = np.arange(0, 96)
o = tf.ones([(n*2)+1, (n*2)+1], tf.int32)
m = tf.constant(a, tf.int32, [r,c])

[[ 0  1  2  3  4  5  6  7  8  9 10 11]
 [12 13 14 15 16 17 18 19 20 21 22 23]
 [24 25 26 27 28 29 30 31 32 33 34 35]
 [36 37 38 39 40 41 42 43 44 45 46 47]
 [48 49 50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69 70 71]
 [72 73 74 75 76 77 78 79 80 81 82 83]
 [84 85 86 87 88 89 90 91 92 93 94 95]]

k = tf.slice(m, [n ,n], [r - n*2, c - n*2])

[[26 27 28 29 30 31 32 33]
 [38 39 40 41 42 43 44 45]
 [50 51 52 53 54 55 56 57]
 [62 63 64 65 66 67 68 69]]

对于'k'中的每个元素,我想得到距离'n'的邻居。

例如

代表'26'我想要以下张量

[[ 0  1  2  3  4 ]
 [12 00 00 00 16 ]
 [24 00 00 00 28 ]
 [36 00 00 00 40 ]
 [48 49 50 51 52]]
在1D中

将是

  

[0,1,2,3,4,12,16,24,28,36,40,48,49,50,51,52]

提前致谢!

1 个答案:

答案 0 :(得分:0)

我认为你只需要一个矩阵作为neighbor_mask(见下面的代码)。实际上这个想法与2d图像中的convolution非常相似。

import tensorflow as tf
import numpy as np
k = tf.cast(tf.constant(np.reshape(np.arange(96), [-1, 12])), 
            tf.float32)
slice_centered_at_m = tf.slice(k, [0, 0], [5, 5])
neighbor_mask = tf.constant([[1, 1, 1, 1, 1],
                             [1, 0, 0, 0, 1],
                             [1, 0, 0, 0, 1],
                             [1, 0, 0, 0, 1],
                             [1, 1, 1, 1, 1]], 
                tf.float32)
with tf.Session() as sess:
  print sess.run(slice_centered_at_m * neighbor_mask)

>> [[  0.   1.   2.   3.   4.]
    [ 12.   0.   0.   0.  16.]
    [ 24.   0.   0.   0.  28.]
    [ 36.   0.   0.   0.  40.]
    [ 48.  49.  50.  51.  52.]]

要为任意元素m获取邻居,只需使用一种方法将基本切片置于m,并将其与掩码相乘。