我正在尝试训练形状预测器并面临一个问题,即 public struct uHalfByte : IFormattable, IComparable<uHalfByte>, IConvertible, INumber<uHalfByte>
{
...
public uHalfByte ConvertGeneric<T>(T item)
{
if (typeof(T) == typeof(int))
{
return new uHalfByte((byte)(int)Convert.ChangeType(item, typeof(int)));
}
else if (typeof(T) == typeof(uint))
{
return new uHalfByte((byte)(uint)Convert.ChangeType(item, typeof(uint)));
}
else if (typeof(T) == typeof(long))
{
return new uHalfByte((byte)(long)Convert.ChangeType(item, typeof(long)));
}
else if (typeof(T) == typeof(ulong))
{
return new uHalfByte((byte)(ulong)Convert.ChangeType(item, typeof(ulong)));
}
else if (typeof(T) == typeof(short))
{
return new uHalfByte((byte)(short)Convert.ChangeType(item, typeof(short)));
}
else if (typeof(T) == typeof(ushort))
{
return new uHalfByte((byte)(ushort)Convert.ChangeType(item, typeof(ushort)));
}
else if (typeof(T) == typeof(byte))
{
return new uHalfByte((byte)Convert.ChangeType(item, typeof(byte)));
}
else if (typeof(T) == typeof(sbyte))
{
return new uHalfByte((byte)(sbyte)Convert.ChangeType(item, typeof(sbyte)));
}
else throw new NotSupportedException(string.Format("Type {0} is not supported, you have to write your own function!", typeof(T)));
}
}
功能需要68分中的5分。那么,如何添加46个叠加?
这是代码,它几乎与文档中的example相同。
add_overlay
输出日志:
#!/usr/bin/python
import os
import sys
import glob
import dlib
from skimage import io
if len(sys.argv) != 2:
print(
"Give the path to the examples/faces directory as the argument to this "
"program. For example, if you are in the python_examples folder then "
"execute this program by running:\n"
" ./train_shape_predictor.py ../examples/faces")
exit()
faces_folder = sys.argv[1]
options = dlib.shape_predictor_training_options()
options.oversampling_amount = 500
options.tree_depth = 2
options.be_verbose = True
training_xml_path = os.path.join(faces_folder, "women_test.xml")
dlib.train_shape_predictor(training_xml_path, "predictor.dat", options)
print("\nTraining accuracy: {}".format(
dlib.test_shape_predictor(training_xml_path, "predictor.dat")))
predictor = dlib.shape_predictor("predictor.dat")
detector = dlib.simple_object_detector("detector.svm")
print("Showing detections and predictions on the images in the objects folder...")
win = dlib.image_window()
for f in glob.glob(os.path.join(faces_folder, "*.jpg")):
print("Processing file: {}".format(f))
img = io.imread(f)
win.clear_overlay()
win.set_image(img)
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
k, d.left(), d.top(), d.right(), d.bottom()))
shape = predictor(img, d)
print("Part 0: {}, Part 1: {} ...".format(shape.part(0),
shape.part(1)))
win.add_overlay(shape)
win.add_overlay(dets)
dlib.hit_enter_to_continue()
答案 0 :(得分:2)
您正在使用dlib窗口检查检测到的点数是5还是68.
在你的情况下你有46分。您需要在cv2窗口上显示图像。
def annotate_landmarks(image, landmarks):
"""
Given image and a set of landmark points, annotates the points for viewing
:param image: Input image
:type image: np.array
:param landmarks: set of facial landmark points
:type landmarks: [(float, float)]
:return: Resulting annotated image
:rtype: np.array
"""
image = image.copy()
for idx, point in enumerate(landmarks):
pos = (point[0, 0], point[0, 1])
cv2.putText(image, str(idx), pos,
fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
fontScale=0.4,
color=(0, 0, 255))
cv2.circle(image, pos, 3, color=(0, 255, 255))
return image
现在使用annotate函数显示结果。
new_img = img
for k, d in enumerate(dets):
shape = predictor(new_img, d)
new_img = annotate_landmarks(new_img, shape)
cv2.imshow(new_image)
cv2.waitkey()
注意:此功能现在可能直接插入您的要求。检查传入shape
函数
annotate_landmarks
类型