如果循环在for循环中起作用

时间:2017-10-17 09:53:30

标签: python arrays numpy matrix linear-algebra

这段代码:

K = 3
N = 3
E = [np.reshape(np.array(i), (K, N)) for i in itertools.product([0, 1, -1], repeat = K*N)]

print 'E = ', E

生成由2个整数形成的所有可能的E矩阵(维度3x3):02,例如:

...
array([[0, 2, 2],
       [0, 0, 0],
       [2, 0, 0]]), array([[0, 2, 2],
       [0, 0, 0],
       [2, 0, 2]]), array([[0, 2, 2],
       [0, 0, 0],
       [2, 2, 0]])
...

给出这个矩阵方程:

A_SC = E * A     # Eqn. 1

其中:

1)*代表标准matrix multiplication(行,列)

2)A_SCEA是3x3矩阵,

3)E是上述代码生成的所有可能的整数矩阵。

4)A是一个已知矩阵:

A =np.array([[   0.288155519353E+01,   0.000000000000E+00,   0.568733333333E+01],
             [  -0.144077759676E+01,   0.249550000000E+01,   0.568733333333E+01],
             [  -0.144077759676E+01,  -0.249550000000E+01,   0.568733333333E+01]])

A_SC矩阵可以表示为3行向量:a1_SCa2_SCa3_SC

       |a1_SC|
A_SC = |a2_SC|
       |a3_SC|

对于给定的E矩阵,有一个A_SC矩阵。

以下代码:

1)遍历所有可能的E矩阵,

2)计算A_SC矩阵,

3)计算a1_SCa2_SCa3_SC的范数,

4)并计算该迭代中E矩阵的行列式:

for indx_E in E:
      A_SC = np.dot(indx_E,A)
      a1_SC = np.linalg.norm(A_SC[0])
      a2_SC = np.linalg.norm(A_SC[1])
      a3_SC = np.linalg.norm(A_SC[2])

      det_indx_E = np.linalg.det(indx_E)
      print 'a1_SC = ', a1_SC
      print 'a2_SC = ', a2_SC
      print 'a3_SC = ', a3_SC
      print 'det_indx_E = ', det_indx_E

目标是获得所有这些3行向量的范数相同且大于10的A_SCE矩阵(公式1),

norm(a1_SC) = norm(a2_SC) = norm(a3_SC) > 10

与此同时,E的决定因素必须大于0.0。 这种情况可以这样表达:在这个for循环之后,我们可以写一个if循环:

tol_1 = 10
tol_2 = 0

for indx_E in E:

      A_SC = np.dot(indx_E,A)
      a1_SC = np.linalg.norm(A_SC[0])
      a2_SC = np.linalg.norm(A_SC[1])
      a3_SC = np.linalg.norm(A_SC[2])

      det_indx_E = np.linalg.det(indx_E)
      print 'a1_SC = ', a1_SC
      print 'a2_SC = ', a2_SC
      print 'a3_SC = ', a3_SC
      print 'det_indx_E = ', det_indx_E

      if  a1_SC > tol_1\
          and a2_SC > tol_1\
          and a3_SC > tol_1\
          and abs(a1_SC - a2_SC) == tol_2\
          and abs(a1_SC - a3_SC) == tol_2\
          and abs(a2_SC - a3_SC) == tol_2\
          and det_indx_E > 0.0:
             print 'A_SC = ', A_SC

             print 'a1_SC = ', a1_SC
             print 'a2_SC = ', a2_SC
             print 'a3_SC = ', a3_SC
             print 'det_indx_E = ', det_indx_E

             # Now, which is the `E` matrix for this `A_SC` ?
             #      A_SC = E * A     # Eqn. 1
             #      A_SC * inv(A) = E * A * inv(A)  # Eqn. 2
             #
             #      ------------------------------
             #     | A_SC * inv(A) = E  # Eqn. 3  |
             #      ------------------------------
             E_sol = np.dot(A_SC, np.linalg.inv(A))
             print 'E_sol = ', E_sol

为了清楚起见,这是整个代码:

A =np.array([[   0.288155519353E+01,   0.000000000000E+00,   0.568733333333E+01],
                 [  -0.144077759676E+01,   0.249550000000E+01,   0.568733333333E+01],
                 [  -0.144077759676E+01,  -0.249550000000E+01,   0.568733333333E+01]])

K = 3
N = 3
E = [np.reshape(np.array(i), (K, N)) for i in itertools.product([0, 1, -1], repeat = K*N)]

print 'type(E) = ', type(E)
print 'E = ', E
print 'len(E) = ', len(E)

tol_1 = 10
tol_2 = 0

for indx_E in E:

      A_SC = np.dot(indx_E,A)
      a1_SC = np.linalg.norm(A_SC[0])
      a2_SC = np.linalg.norm(A_SC[1])
      a3_SC = np.linalg.norm(A_SC[2])

      det_indx_E = np.linalg.det(indx_E)
      print 'a1_SC = ', a1_SC
      print 'a2_SC = ', a2_SC
      print 'a3_SC = ', a3_SC
      print 'det_indx_E = ', det_indx_E

      if  a1_SC > tol_1\
          and a2_SC > tol_1\
          and a3_SC > tol_1\
          and abs(a1_SC - a2_SC) == tol_2\
          and abs(a1_SC - a3_SC) == tol_2\
          and abs(a2_SC - a3_SC) == tol_2\
          and det_indx_E > 0.0:
             print 'A_SC = ', A_SC

             print 'a1_SC = ', a1_SC
             print 'a2_SC = ', a2_SC
             print 'a3_SC = ', a3_SC
             print 'det_indx_E = ', det_indx_E

             # Now, which is the `E` matrix for this `A_SC` ?
             #      A_SC = E * A     # Eqn. 1
             #      A_SC * inv(A) = E * A * inv(A)  # Eqn. 2
             #
             #      ------------------------------
             #     | A_SC * inv(A) = E  # Eqn. 3  |
             #      ------------------------------
             E_sol = np.dot(A_SC, np.linalg.inv(A))
             print 'E_sol = ', E_sol

问题是没有打印A_SC(因此没有E_sol)。 如果运行此代码,则在每次迭代时都会打印所有规范和决定因素,例如:

a1_SC =  12.7513326014
a2_SC =  12.7513326014
a3_SC =  12.7513326014
det_indx_E =  8.0

这将是一个完美的候选人,因为它满足

a1_SC = a2_SC = a3_SC = 12.7513326014 > 10.0

determinant > 0.0

然而,没有打印A_SC(因此没有E_sol)......为什么会发生这种情况?

例如,这个E矩阵:

        2 0 0
  E =   0 2 0
        0 0 2

det = 8.0,并且是候选人,因为它有:

a1_SC = a2_SC = a3_SC = 12.7513326014 > 10.0

1 个答案:

答案 0 :(得分:0)

简单的答案是不要将双输出误认为具有真实底层精度的字符串。最简单的改变:

tol_2 = 1e-8

并将与tol_2相关的条件更改为限制:

        and abs(a1_SC - a2_SC) <= tol_2\
        and abs(a1_SC - a3_SC) <= tol_2\
        and abs(a2_SC - a3_SC) <= tol_2\

那应该可以解决你的问题。

请记住,当您未在计算机上明确使用符号计算时,即使在最简单的示例中也应该始终为数字错误做好准备

如果您需要检查 STRICT 数学某些事情的相等性 - 您必须使用符号数学包和相关机器。

如果所需的平等更多是“物理”和“物理”。感觉(比如,什么力足以拉动那个盒子) - 然后我描述的方法就可以了,因为一些错误&#39;在物理世界中总是存在,你必须说明所需的容忍度(在这种情况下我们使用tol_2