我有一个看起来像这样的pandas数据框,并重复大约10k行:
Lbl # Value Time
16 160 0-00-000-0000-0000-0000-0000-00 000:00:00:00.206948
17 270 0-00-000-0000-0001-1010-0110-00 000:00:00:00.212948
18 271 1-00-000-0000-0000-0110-1110-00 000:00:00:00.215828
19 272 0-00-001-1000-0111-1111-1000-00 000:00:00:00.218708
20 273 1-00-000-0000-0000-0111-1110-00 000:00:00:00.221588
21 274 0-00-000-0000-0000-1001-0110-00 000:00:00:00.224468
22 275 0-00-001-1111-0000-0000-0000-00 000:00:00:00.227348
23 276 1-00-000-0000-0000-0000-0000-00 000:00:00:00.233428
24 277 0-00-000-0000-0000-0000-0000-00 000:00:00:00.236308
29 334 0-11-000-0000-0000-0000-0000-00 000:00:00:00.253900
63 160 0-00-000-0000-0000-0000-0000-00 000:00:00:00.458692
我如何进入每个'价值'标签并将其分解为24个相应的位。最终游戏是能够在数据文件的过程中绘制标签160,位19,以及其他一些分析。
感谢。
编辑:MaxU的答案奏效了。仅为未来的访问者,我最终得到的最终代码是:
df_bits = df_binary.Value.str.replace('-','').str.extractall('(\d)').unstack().astype(np.int8).add_prefix('b')
df_binary = pd.concat([df_binary, df_bits], axis = 1)
答案 0 :(得分:3)
IIUC:
In [43]: df
Out[43]:
Lbl # Value Time
0 16 160 0-00-000-0000-0000-0000-0000-00 000:00:00:00.206948
1 17 270 0-00-000-0000-0001-1010-0110-00 000:00:00:00.212948
2 18 271 1-00-000-0000-0000-0110-1110-00 000:00:00:00.215828
3 19 272 0-00-001-1000-0111-1111-1000-00 000:00:00:00.218708
4 20 273 1-00-000-0000-0000-0111-1110-00 000:00:00:00.221588
5 21 274 0-00-000-0000-0000-1001-0110-00 000:00:00:00.224468
6 22 275 0-00-001-1111-0000-0000-0000-00 000:00:00:00.227348
7 23 276 1-00-000-0000-0000-0000-0000-00 000:00:00:00.233428
8 24 277 0-00-000-0000-0000-0000-0000-00 000:00:00:00.236308
9 29 334 0-11-000-0000-0000-0000-0000-00 000:00:00:00.253900
10 63 160 0-00-000-0000-0000-0000-0000-00 000:00:00:00.458692
In [44]: df.Value.str.replace('-','').str.extractall('(\d)').unstack().astype(np.int8).add_prefix('b')
Out[44]:
b0 ...
match b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ... b14 b15 b16 b17 b18 b19 b20 b21 b22 b23
0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 ... 1 0 1 0 0 1 1 0 0 0
2 1 0 0 0 0 0 0 0 0 0 ... 0 1 1 0 1 1 1 0 0 0
3 0 0 0 0 0 1 1 0 0 0 ... 1 1 1 1 1 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0 ... 0 1 1 1 1 1 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 1 0 1 1 0 0 0
6 0 0 0 0 0 1 1 1 1 1 ... 0 0 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
9 0 1 1 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
[11 rows x 24 columns]