将数据帧转换为另一个数据帧,将复合字符串单元格拆分为单独的行

时间:2018-08-08 16:04:24

标签: python pandas dataframe split

我希望使用Python将数据帧df1转换为df2。我有一个使用循环的解决方案,但我想知道是否有更简单的方法来创建df2。

df1

   Test1   Test2   2014  2015  2016  Present
1     x        a     90    85    84        0
2     x      a:b     88    79    72        1
3     y    a:b:c     75    76    81        0
4     y        b     60    62    66        0
5     y        c     68    62    66        1

df2

   Test1  Test2   2014  2015  2016  Present
1     x       a     90    85    84        0
2     x       a     88    79    72        1
3     x       b     88    79    72        1
4     y       a     75    76    81        0
5     y       b     75    76    81        0
6     y       c     75    76    81        0
7     y       b     60    62    66        0
8     y       c     68    62    66        1

2 个答案:

答案 0 :(得分:1)

这是使用numpy.repeatitertools.chain的一种方法:

import numpy as np
from itertools import chain

# split by delimiter and calculate length for each row
split = df['Test2'].str.split(':')
lens = split.map(len)

# repeat non-split columns
cols = ('Test1', '2014', '2015', '2016', 'Present')
d1 = {col: np.repeat(df[col], lens) for col in cols}

# chain split columns
d2 = {'Test2': list(chain.from_iterable(split))}

# combine in a single dataframe
res = pd.DataFrame({**d1, **d2})

print(res)

   2014  2015  2016  Present Test1 Test2
1    90    85    84        0     x     a
2    88    79    72        1     x     a
2    88    79    72        1     x     b
3    75    76    81        0     y     a
3    75    76    81        0     y     b
3    75    76    81        0     y     c
4    60    62    66        0     y     b
5    68    62    66        1     y     c

答案 1 :(得分:0)

这将实现您想要的:

# Converting "Test2" strings into lists of values
df["Test2"] = df["Test2"].apply(lambda x: x.split(":"))

# Creating second dataframe with "Test2" values
test2 = df.apply(lambda x: pd.Series(x['Test2']),axis=1).stack().reset_index(level=1, drop=True)
test2.name = 'Test2'

# Joining both dataframes
df = df.drop('Test2', axis=1).join(test2)

print(df)

  Test1 2014 2015 2016 Present Test2
1     x   90   85   84       0     a
2     x   88   79   72       1     a
2     x   88   79   72       1     b
3     y   75   76   81       0     a
3     y   75   76   81       0     b
3     y   75   76   81       0     c
4     y   60   62   66       0     b
5     y   68   62   66       1     c

类似的问题(列已作为列表存在):1 2