我在下面写了代码来使用多项式回归。能够适应模型,但无法预测!!
def polynomial_function(power=5, random_state=9):
global X_train
global y_train
X_train = X_train[['item_1','item_2','item_3','item_4']]
rng = np.random.RandomState(random_state)
poly = PolynomialFeatures(degree=power, include_bias=False)
linreg = LinearRegression(normalize=True)
new_X_train = poly.fit_transform(X_train)
linreg.fit(new_X_train, y_train)
new_x_test = np.array([4, 5, 6, 7]).reshape(1, -1)
print linreg.predict(new_x_test)
return linreg
linreg = polynomial_function()
我收到以下错误消息:
ValueError: shapes (1,4) and (125,) not aligned: 4 (dim 1) != 125 (dim 0)
错误发生在这里,
new_x_test = np.array([4, 5, 6, 7]).reshape(1, -1)
print linreg.predict(new_x_test)
我找到了new_X_train的形状=(923,125) 和形状new_x_test =(1,4)
这有什么关系?
当我尝试使用(1,4)的形状进行预测时算法会尝试将其转换为不同的形状吗?
它是否试图找出测试数据的度数为5的多项式?
我正在尝试学习多项式回归,任何人都可以解释发生了什么吗?
答案 0 :(得分:0)
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
pipeline = Pipeline([
('poly', PolynomialFeatures(degree=5, include_bias=False)),
('linreg', LinearRegression(normalize=True))
])
pipeline.fit(X_train, y_train)
pipeline.predict(np.array([4, 5, 6, 7]).reshape(1, -1))