我试图弄清楚如何通过回归模型对数据集的另一部分进行测试,以使我开始感到困惑exportAsDoc() {
const preHtml = '<html xmlns:o=\'urn:schemas-microsoft-com:office:office\' ' + '' +
' xmlns:w=\'urn:schemas-microsoft-com:office:word\' xmlns=\'http://www.w3.org/TR/REC-html40\'><head><meta charset=\'utf-8\'>' +
'<title>Export HTML To Doc</title></head><body>';
const postHtml = '</body></html>';
let innerHtml = '';
// Specify file name
const filename = this.respSheet.title + '.doc';
const respSheetKpis = this.respSheet.sheet_kpis;
respSheetKpis.forEach(x => {
const footer = '<p style="text-align: center">' + x.kpi.name + ' - ' + x.kpiValue + '</p>';
innerHtml += footer;
x.sheet_kpi_dimensions.forEach(dimension => {
if (dimension.dimension !== undefined) innerHtml += dimension.dimension.name;
let table = '<table>\n' +
' <tr>\n' +
' <th>Istatistik adi</th>\n' +
' <th>Degeri</th> \n' +
' </tr>\n';
const data = dimension.data;
if (data !== undefined) {
for ( let i = 0 ; i < data.length ; i ++ ) {
table += ' <tr>\n' +
' <th>' + data[ i ].title + '</th>\n' +
' <th>' + data[ i ].value + '</th> \n' +
' </tr>\n';
}
table += '</table>';
innerHtml += table;
}
})
});
const html = preHtml + innerHtml + postHtml;
const blob = new Blob(['\ufeff', html], {
type: 'application/msword'
});
// Specify link url
const url = 'data:application/vnd.ms-word;charset=utf-8,' + encodeURIComponent(html);
// Create download link element
const downloadLink = document.createElement('a');
document.body.appendChild(downloadLink);
if (navigator.msSaveOrOpenBlob ) {
navigator.msSaveOrOpenBlob(blob, filename);
} else {
// Create a link to the file
downloadLink.href = url;
// Setting the file name
downloadLink.download = filename;
// triggering the function
downloadLink.click();
}
document.body.removeChild(downloadLink);
,但我却错失了自己的错。
matrix
当我这样预测时,我会收到此错误:
“ model.frame.default(条款,newdata,na.action = na.action, xlev = object $ xlevels):因子状态具有新级别AP“
dupt:Report studentreport
答案 0 :(得分:0)
我重新输入了您发布的代码。由于在您的数据中找不到Enrolling
列,因此在glm
列中使用了GPATypeWeighted
以便进行模型检查。未检测到预测错误。
library(leaps)
library(caret)
studentreport <- dget("https://drive.google.com/uc?authuser=0&id=1PHpkhPpEjIt-apCJpzvAKAlWZTPX7Evv&export=download")
studentreport <- data.frame(studentreport)
smp_size <- floor(0.75 * nrow(studentreport))
set.seed(123)
train_ind <- sample(seq_len(nrow(studentreport)), size = smp_size)
train <- studentreport[train_ind, ]
test <- studentreport[-train_ind, ]
fitreport <- glm(train)
Fitstart = glm(GPATypeWeighted ~ 1, data = train)
Report <- step(Fitstart, direction="forward", scope = formula(fitreport))
predict(Report, newdata = test, type ="response")
3 4 5 7 13 14 16 23 27 36
1.000000e+00 1.000000e+00 1.000000e+00 1.804986e-15 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
37 43 44 56 57 60 62 64 66 69
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 2.097525e-15
70 79 82 86 91 92 93 96 97 100
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
101 108 112 114 115 116 117 120 123 138
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 2.199615e-15 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
140 148 155 157 158 161 164 165 174 177
1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
180 185 187 200 203 204 207 214 215 216
1.000000e+00 1.000000e+00 1.000000e+00 1.756027e-15 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.686952e-15 1.000000e+00
222 239 248
1.000000e+00 1.000000e+00 1.000000e+00