我正在尝试将模型安装到一个简单的汽车游戏中,该游戏可以驱动避开障碍物的“汽车”。还有其他一些障碍可以收集。
汽车只能向左或向右。
我遇到的问题是,无论我使用什么参数进行训练,汽车只能直接向左或向右移动(当碰到屏幕边界时会崩溃)。
我存储汽车的x坐标,以及每个框架的训练数据中障碍物的x和y坐标。
首先,它会生成随机操作并保存在score_requirement之上的操作。然后使用tflearn adamoptimizer训练模型对抗它们。
最后,它以10场比赛的训练模型显示游戏。
我做错了什么?
以下是代码:
LR = 1e-3
goal_steps = 400
score_requirement = 100
initial_games = 100
class Game:
done = False
x = (display_width * 0.5)
y = (display_height * 0.8)
x_change = 0
x_change_scale = 5
thing_startx = random.randrange(0, display_width-100)
thing_starty = -100
thing_speed = 7
thing_width = 100
thing_height = 100
dodged = 0
state = None
steps_beyond_done = None
def reset(self):
self.done = False
self.x = (display_width * 0.5)
self.y = (display_height * 0.8)
self.x_change = 0
self.x_change_scale = 5
self.thing_startx = random.randrange(0, display_width-100)
self.thing_starty = -100
self.thing_speed = 7
self.thing_width = 100
self.thing_height = 100
self.dodged = 0
self.steps_beyond_done = None
#self.state = np.random.uniform(low=-1, high=1, size=(5,))
self.state = (self.x, self.thing_startx, self.thing_starty)
def step(self, action):
state = self.state
x, thing_startx, thing_starty = state
info = ""
reward = 0
if action == 0:
# right movement
x_change = self.x_change_scale
elif action == 1:
# left movement
x_change = -self.x_change_scale
else:
# stay in position
info = "no change"
x += x_change
thing_starty += self.thing_speed
if self.dodged == 30:
self.x_change_scale = 6
if self.dodged == 50:
self.x_change_scale = 8
if self.dodged == 70:
self.x_change_scale = 10
if self.dodged == 90:
self.x_change_scale = 12
if x > display_width-carWidth or x < 0:
self.done = True
if thing_starty > display_height:
thing_starty = 0 - self.thing_height
thing_startx = random.randrange(0,display_width-100)
self.dodged += 1
self.thing_speed += 0.2
#thing_width += (dodged * 1.2)
if self.y < thing_starty+self.thing_height and self.y+50 > thing_starty:
if x > thing_startx and x < thing_startx + self.thing_width or x+carWidth > thing_startx and x+carWidth < thing_startx+self.thing_width:
# Bonus block
self.done = True
self.state = (x, thing_startx, thing_starty)
observation = np.array(self.state)
if not self.done:
reward = 1
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1
else:
if self.steps_beyond_done == 0:
logger.warning("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = 0
return observation, reward, self.done, {}
def render(self):
x, thing_startx, thing_starty = self.state
gameDisplay.fill(white)
things(thing_startx, thing_starty, self.thing_width, self.thing_height, block_color)
car(x,self.y)
things_dodged(self.dodged)
pygame.display.update()
clock.tick(60)
env = Game()
env.reset()
pygame.init()
gameDisplay = pygame.display.set_mode((display_width,display_height))
pygame.display.set_caption('Crashed!!!')
clock = pygame.time.Clock()
carImg = pygame.image.load('car.png')
carWidth = 50
pause = True
def things_dodged(count):
font = pygame.font.SysFont(None, 25)
text = font.render('Score: '+str(count), True, black)
gameDisplay.blit(text, (0,0))
def things(thingx, thingy, thingw, thingh, color):
pygame.draw.rect(gameDisplay, color, [thingx, thingy, thingw, thingh])
def car(x,y):
gameDisplay.blit(carImg, (x,y))
#pygame.draw.polygon(gameDisplay, green, ((x-carWidth,y+carWidth),(x+carWidth,y+carWidth),(x,y-carWidth)))
def text_objects(text, font):
textSurface = font.render(text, True, black)
return textSurface, textSurface.get_rect()
def message_display(text):
largeText = pygame.font.Font('freesansbold.ttf',115)
TextSurf, TextRect = text_objects(text, largeText)
TextRect.center = ((display_width/2),(display_height/2))
gameDisplay.blit(TextSurf, TextRect)
pygame.display.update()
time.sleep(2)
game_loop()
def quit_game():
pygame.quit()
quit()
def initial_population():
global env
# [OBS, MOVES]
training_data = []
# all scores:
scores = []
# just the scores that met our threshold:
accepted_scores = []
# iterate through however many games we want:
for _ in range(initial_games):
done = False
score = 0
# moves specifically from this environment:
game_memory = []
# previous observation that we saw
prev_observation = []
# for each frame in 200
for _ in range(goal_steps):
# RENDERING
#env.render()
# choose random action (0 or 1)
action = random.randrange(0,2)
# do it!
observation, reward, done, info = env.step(action)
# notice that the observation is returned FROM the action
# so we'll store the previous observation here, pairing
# the prev observation to the action we'll take.
if len(prev_observation) > 0 :
game_memory.append([prev_observation, action])
prev_observation = observation
score+=reward
if done:
break
# IF our score is higher than our threshold, we'd like to save
# every move we made
# NOTE the reinforcement methodology here.
# all we're doing is reinforcing the score, we're not trying
# to influence the machine in any way as to HOW that score is
# reached.
if score >= score_requirement:
accepted_scores.append(score)
for data in game_memory:
# convert to one-hot (this is the output layer for our neural network)
if data[1] == 1:
output = [0,1]
elif data[1] == 0:
output = [1,0]
# saving our training data
training_data.append([data[0], output])
# reset env to play again
env.reset()
# save overall scores
scores.append(score)
# just in case you wanted to reference later
training_data_save = np.array(training_data)
np.save('saved.npy',training_data_save)
# some stats here, to further illustrate the neural network magic!
print('Average accepted score:',mean(accepted_scores))
print('Median score for accepted scores:',median(accepted_scores))
print(Counter(accepted_scores))
return training_data
def neural_network_model(input_size):
network = input_data(shape=[None, input_size, 1], name='input')
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(network, tensorboard_dir='log')
return model
def train_model(training_data, model=False):
X = np.array([i[0] for i in training_data]).reshape(-1,len(training_data[0][0]),1)
y = [i[1] for i in training_data]
if not model:
model = neural_network_model(input_size = len(X[0]))
model.fit({'input': X}, {'targets': y}, n_epoch=5, snapshot_step=1000, show_metric=True, run_id='openai_learning')
return model
#some_random_games_first()
training_data = initial_population()
model = train_model(training_data)
scores = []
choices = []
for each_game in range(10):
score = 0
game_memory = []
prev_obs = []
env.reset()
for _ in range(goal_steps):
env.render()
if len(prev_obs)==0:
action = random.randrange(0,2)
else:
action = np.argmax(model.predict(prev_obs.reshape(-1,len(prev_obs),1))[0])
choices.append(action)
new_observation, reward, done, info = env.step(action)
prev_obs = new_observation
game_memory.append([new_observation, action])
score+=reward
if done: break
scores.append(score)
print('Average Score:',sum(scores)/len(scores))
print('choice 1:{} choice 0:{}'.format(choices.count(1)/len(choices),choices.count(0)/len(choices)))
print(score_requirement)
pygame.quit()
quit()