我正在使用keras 2.0.8和tensorflow 1.3.0后端。
我在类init中加载模型,然后用它来预测多线程。
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
class CNN:
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.session = K.get_session()
self.graph = tf.get_default_graph()
def query_cnn(self, data):
X = self.preproccesing(data)
with self.session.as_default():
with self.graph.as_default():
return self.cnn_model.predict(X)
我初始化CNN一次,query_cnn方法从多个线程发生。
我在日志中遇到的异常是:
File "/home/*/Similarity/CNN.py", line 43, in query_cnn
return self.cnn_model.predict(X)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 913, in predict
return self.model.predict(x, batch_size=batch_size, verbose=verbose)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 1713, in predict
verbose=verbose, steps=steps)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py", line 1269, in _predict_loop
batch_outs = f(ins_batch)
File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py", line 2273, in __call__
**self.session_kwargs)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 895, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1124, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1321, in _do_run
options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1340, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.NotFoundError: PruneForTargets: Some target nodes not found: group_deps
代码在大多数情况下都能正常工作,这可能是多线程的一些问题。
我该如何解决?
答案 0 :(得分:16)
确保在创建其他线程之前完成图表创建。
在图表上调用finalize()
可能会对此有所帮助。
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize()
更新1: finalize()
会使您的图表为只读,以便可以安全地在多个线程中使用。作为副作用,它将帮助您找到无意的行为,有时还会发现内存泄漏,因为当您尝试修改图形时会引发异常。
想象一下,你有一个线程可以对输入进行一次热编码。 (不好的例子:)
def preprocessing(self, data):
one_hot_data = tf.one_hot(data, depth=self.num_classes)
return self.session.run(one_hot_data)
如果您打印图表中的对象数量,您会发现它会随着时间的推移而增加
# amount of nodes in tf graph
print(len(list(tf.get_default_graph().as_graph_def().node)))
但是如果你首先定义图形并不是这种情况(代码稍微好一些):
def preprocessing(self, data):
# run pre-created operation with self.input as placeholder
return self.session.run(self.one_hot_data, feed_dict={self.input: data})
更新2:根据此thread,您需要在进行多线程处理之前在keras模型上调用model._make_predict_function()
。
Keras在您第一次调用predict()时构建GPU函数。那 方式,如果你从不打电话预测,你节省了一些时间和资源。 但是,第一次调用predict会比每次调用稍慢 其他时间。
更新的代码:
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.cnn_model._make_predict_function() # have to initialize before threading
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize() # make graph read-only
更新3:我做了一个预热概念的证明,因为_make_predict_function()
似乎没有按预期工作。
首先,我创建了一个虚拟模型:
import tensorflow as tf
from keras.layers import *
from keras.models import *
model = Sequential()
model.add(Dense(256, input_shape=(2,)))
model.add(Dense(1, activation='softmax'))
model.compile(loss='mean_squared_error', optimizer='adam')
model.save("dummymodel")
然后在另一个脚本中我加载了该模型并使其在多个线程上运行
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
import threading as t
import numpy as np
K.clear_session()
class CNN:
def __init__(self, model_path):
self.cnn_model = load_model(model_path)
self.cnn_model.predict(np.array([[0,0]])) # warmup
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize() # finalize
def preproccesing(self, data):
# dummy
return data
def query_cnn(self, data):
X = self.preproccesing(data)
with self.session.as_default():
with self.graph.as_default():
prediction = self.cnn_model.predict(X)
print(prediction)
return prediction
cnn = CNN("dummymodel")
th = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th2 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th3 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th4 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th5 = t.Thread(target=cnn.query_cnn, kwargs={"data": np.random.random((500, 2))})
th.start()
th2.start()
th3.start()
th4.start()
th5.start()
th2.join()
th.join()
th3.join()
th5.join()
th4.join()
评论热身的界限并最终确定我能够重现你的第一个问题