x=1
n=1
series1=0
z=[]
t= arange(-2,2,.1)
for i in t:
series1=series1 + ((2/n/pi)*(sin(n*x)))
x+=1
z.append(series1)
my_list=z
newlist = [x+.5 for x in my_list]
plot(newlist,t)
xlabel('x-range')
ylabel('A(X)')
title('square wave')
图像代表我想要绘制的函数:
我的情节图,看起来不像方波:
答案 0 :(得分:1)
编辑:
更多pythonic版本:
import matplotlib.pyplot as plt
import numpy as np
N_max = 101 #the larger the value the steeper the transition from 0 to 1 and the more "square"
n_odds = np.arange(1,N_max,2)
xs = np.arange(-6,6,0.1)
ys = [0.5+sum(np.multiply(2/(n_odds*np.pi), np.sin(n_odds*x))) for x in xs]
plt.plot(xs, ys)
plt.show()
这是一个适合我的版本。你最大的错误就是没有骑自行车穿过奇怪的N.如果您对代码有疑问,请发表评论。
import matplotlib.pyplot as plt
import numpy as np
N_max = 101
n_odds = np.arange(1,N_max,2)
xs = np.arange(-6,6,0.1)
ys = []
for x in xs:
sum_terms = []
for n_odd in n_odds:
frac_term = 2/(n_odd*np.pi)
sin_term = np.sin(n_odd*x)
sum_term = frac_term*sin_term
sum_terms.append(sum_term)
y = 0.5+sum(sum_terms)
ys.append(y)
plt.plot(xs, ys)
plt.show()