我有一个包含6个变量的数据框。对于每个列,具有一些缺失值的同一组的数据相同。我想通过为每个变量复制相同组的值来填充这些缺失值。如果特定组缺少所有值,则应填写上述组的值。所以,我希望结果为df_complete。
这是我尝试过的但是当第一次观察任何一组失踪时失败了。无法弄清楚它有什么问题。
set.seed(123)
df <- data.frame(matrix(rnorm(100), ncol = 5))
df$Group <- letters[1:20]
df <- df[rep(seq_len(nrow(df)), sample(1:10, 20, replace = T)),]
df_complete <- df
df$X1[sample(1:nrow(df), 15)] <- NA
df$X2[sample(1:nrow(df), 10)] <- NA
df$X3[sample(1:nrow(df), 25)] <- NA
df$X4[sample(1:nrow(df), 10)] <- NA
df$X5[sample(1:nrow(df), 15)] <- NA
lvcf <- function(x)
{
miss_ind <- which(is.na(x))
if(length(miss_ind) != 0)
{
if(miss_ind[1]==1)
{
ind1 <- which(!is.na(x))[1]
x[1] <- x[ind1]
miss_ind <- which(is.na(x))
}
for(i in 1:length(miss_ind))
{
x[miss_ind[i]] <- x[miss_ind[i]-1]
}
}
return(x)
}
df_complete <- df %>%
group_by(Group) %>%
sapply(lvcf)
答案 0 :(得分:2)
包var p = Expression.Parameter(typeof(Employee));
var m = Expression.Property(p, "Salary");
var e = Expression.Lambda(m, p);
var selector = (Expression<Func<Employee,decimal>>)e;
具有处理zoo
的问题na.locf
的功能。
last observation carried forward
请注意library(zoo)
df_complete <- df %>%
group_by(Group) %>%
na.locf(., na.rm = FALSE)
head(df_complete)
## A tibble: 6 x 6
## Groups: Group [2]
# X1 X2 X3 X4 X5 Group
# <chr> <chr> <chr> <chr> <chr> <chr>
#1 -0.56047565 -1.06782371 -0.69470698 <NA> 0.005764186 a
#2 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#3 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#4 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#5 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#6 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
列中的<NA>
。
修改强>
根据下面的OP评论和G.Grothendieck的回答,以下内容删除了所有X4
值。只需使用带参数NA
的第二个na.locf
。
fromLast = TRUE
编辑2
遵循OP发现的错误,这是仅使用df_complete <- df %>%
group_by(Group) %>%
na.locf(., na.rm = FALSE) %>%
na.locf(., fromLast = TRUE)
head(df_complete)
## A tibble: 6 x 6
## Groups: Group [2]
# X1 X2 X3 X4 X5 Group
# <chr> <chr> <chr> <chr> <chr> <chr>
#1 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#2 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#3 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#4 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#5 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#6 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
的解决方案。我会创建一个新的df,其值为base R
,每组开始但第一组,即组NA
。
a