我在为im2txt微调预先训练的Inception v3模型时遇到问题。出于某种原因,初始训练并没有大大减少损失,微调初始v3并没有减少我的训练数据的任何损失。我试图找出原因,任何见解都会有所帮助。
im2txt是一个模型,它接收图像输入并打印出一系列字幕作为输出。最初,im2txt将标题打印为连贯句子,描述图像。为了适应我的项目,我更改了训练数据中的代码和标签,以便打印出与图像相关的单词列表。
例如,我的图片看起来像这样。请注意,图像中有很多对象而不是普通的Imagenet图像:
我的标签字幕如下所示:
female lady woman clothes shop customer
我总共有400,000张图片和相应的标签标题。我训练了130,000步的初步训练,并进行了170,000步的微调。词汇总共有750个单词。初始训练+微调(从步骤130,000开始)的损失曲线如下:
精度和召回率约为0.35~40。
培训的配置文件如下:
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image-to-text model and training configurations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
class ModelConfig(object):
"""Wrapper class for model hyperparameters."""
def __init__(self):
"""Sets the default model hyperparameters."""
# File pattern of sharded TFRecord file containing SequenceExample protos.
# Must be provided in training and evaluation modes.
self.input_file_pattern = None
# Image format ("jpeg" or "png").
self.image_format = "jpeg"
# Approximate number of values per input shard. Used to ensure sufficient
# mixing between shards in training.
self.values_per_input_shard = 2300
# Minimum number of shards to keep in the input queue.
self.input_queue_capacity_factor = 2
# Number of threads for prefetching SequenceExample protos.
self.num_input_reader_threads = 1
# Name of the SequenceExample context feature containing image data.
self.image_feature_name = "image/data"
# Name of the SequenceExample feature list containing integer captions.
self.caption_feature_name = "image/caption_ids"
# Number of unique words in the vocab (plus 1, for <UNK>).
# The default value is larger than the expected actual vocab size to allow
# for differences between tokenizer versions used in preprocessing. There is
# no harm in using a value greater than the actual vocab size, but using a
# value less than the actual vocab size will result in an error.
self.vocab_size = 750
# Number of threads for image preprocessing. Should be a multiple of 2.
self.num_preprocess_threads = 4
# Batch size.
self.batch_size = 32
# File containing an Inception v3 checkpoint to initialize the variables
# of the Inception model. Must be provided when starting training for the
# first time.
self.inception_checkpoint_file = None
# Dimensions of Inception v3 input images.
self.image_height = 299
self.image_width = 299
# Scale used to initialize model variables.
self.initializer_scale = 0.08
# LSTM input and output dimensionality, respectively.
self.embedding_size = 512
self.num_lstm_units = 512
# If < 1.0, the dropout keep probability applied to LSTM variables.
self.lstm_dropout_keep_prob = 0.7
class TrainingConfig(object):
"""Wrapper class for training hyperparameters."""
def __init__(self):
"""Sets the default training hyperparameters."""
# Number of examples per epoch of training data.
self.num_examples_per_epoch = 100000
# Optimizer for training the model.
self.optimizer = "SGD"
# Learning rate for the initial phase of training.
self.initial_learning_rate = 2.0
self.learning_rate_decay_factor = 0.5
self.num_epochs_per_decay = 1.0
# Learning rate when fine tuning the Inception v3 parameters.
self.train_inception_learning_rate = 0.005
# If not None, clip gradients to this value.
self.clip_gradients = 5.0
# How many model checkpoints to keep.
self.max_checkpoints_to_keep = 5
任何建议,见解或观察都会很棒。
答案 0 :(得分:1)
请注意,im2txt在创建可读句子的意义上非常强大。在句子中,一个单词与相邻单词相关,这就是它起作用的原因。在您的情况下,您正在更改模型以生成一组与订单无关的标签。实际上,在im2txt模型中,“女性”,“女性”和“女性”这两个词的概念基本相同,im2txt可以创建滑动这个词的句子。例如,在im2txt中:“那位女士穿着漂亮的粉红色裙子”就像“女人的裙子是粉红色的”一样,或者应该非常相似。在您的情况下,如果您没有为单词的顺序提供一些规则,那么它会使您的模型混淆很多,并且可能无法学习。
如果要从图像中获取标签列表,则应仅使用具有多标记分类的初始模型(通过sigmoid层更改softmax图层并使用sigmoid cross entropy作为损失函数)。