我正在做这个练习问题,以找出矩阵中是否存在单词,这让我意识到我并没有完全得到DFS。
在破解编码面试时,DFS的伪代码是:
void search(Node root) {
if (root == null) return;
visit(root);
root.visited = true;
for each (Node n in root.adjacent) {
if (n.visited == false) {
search(n);
}
}
}
对我而言,这看起来像格式:
因此,使用这种格式,我编写了函数dfs()
:
function dfs(r, c, i) {
// goal
if (i === word.length-1) return true;
// mark
board[r][c] = '#';
// loop and recurse each neighbor
for (var d of dirs) {
var nr = r + d[0];
var nc = c + d[1];
// bail early if neighbor does not meet conditions
if (nr < 0 || nc < 0 || nr >= board.length || nc >= board[0].length) continue; // neighbor is out of bounds
if (board[nr][nc] === '#') continue; // neighbor already visited
if (board[nr][nc] !== word[i+1]) continue; // neighbor does not meet goal
// recursion
var result = dfs(nr, nc, i+1);
// un-mark
board[r][c] = word[i];
return result;
}
}
其次,我注意到大多数解决方案根本不使用for循环,而只是为每个邻居写了4次递归。考虑到这一点,我写了dfs2()
:
递归
function dfs2(r, c, i) {
// goal
if (i === word.length) return true;
// bail early if current does not meet conditions
if (r < 0 || c < 0 || r >= board.length || c >= board[0].length) return false; // current is out of bounds
if (board[r][c] === '#') return false; // current already visited
if (board[r][c] !== word[i]) return false; // current does not meet goal
// mark
board[r][c] = '#';
// recursion
var result = dfs2(r+1, c, i+1) || dfs2(r-1, c, i+1) || dfs2(r, c+1, i+1) || dfs2(r, c-1, i+1);
// un-mark
board[r][c] = word[i];
return result;
}
这更简洁,但我更难理解。第一个版本dfs()
在递归之前对邻居进行循环和保释,这对我来说更有意义。 “如果邻居不好,就不要去那里。”第二个版本没有循环,因此它会对当前节点执行所有检查。
我注意到的第一件事是,在涉及网格的大多数问题中,解决方案在递归后涉及“取消标记”。为什么是这样?这仅适用于像“单词搜索问题”这样的特定情况,您可能希望在将来以不同的路径重新访问节点吗?
哪个是正确的,dfs()
或dfs2()
?
https://repl.it/MSCw/0 这是整个事情的组合:
var dirs = [
[0,1], // r
[1,0], // d
[0,-1], // u
[-1,0], // l
];
var wsBoard = [
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
];
var exist = function(board, word, version) {
for (var r = 0; r < board.length; r++) {
for (var c = 0; c < board[0].length; c++) {
if (board[r][c] === word[0])
if (dfs(r, c, 0)) return true;
// if (dfs2(r, c, 0)) return true;
}
}
return false;
function dfs(r, c, i) {
console.log(`(${r},${c})\t${i}: ${word[i]}`);
// goal
if (i === word.length-1) return true;
// mark
board[r][c] = '#';
// loop and recurse each neighbor
for (var d of dirs) {
var nr = r + d[0];
var nc = c + d[1];
// bail early if neighbor does not meet conditions
if (nr < 0 || nc < 0 || nr >= board.length || nc >= board[0].length) continue; // neighbor is out of bounds
if (board[nr][nc] === '#') continue; // neighbor already visited
if (board[nr][nc] !== word[i+1]) continue; // neighbor does not meet goal
console.log(board);
// recursion
var result = dfs(nr, nc, i+1);
// un-mark
board[r][c] = word[i];
return result;
}
}
function dfs2(r, c, i) {
console.log(`(${r},${c})\t${i}: ${word[i]}`);
// goal
if (i === word.length) return true;
// bail early if current does not meet conditions
if (r < 0 || c < 0 || r >= board.length || c >= board[0].length) return false; // current is out of bounds
if (board[r][c] === '#') return false; // current already visited
if (board[r][c] !== word[i]) return false; // current does not meet goal
// mark
board[r][c] = '#';
console.log(board);
// recursion
var result = dfs2(r+1, c, i+1) || dfs2(r-1, c, i+1) || dfs2(r, c+1, i+1) || dfs2(r, c-1, i+1);
// un-mark
board[r][c] = word[i];
return result;
}
};
console.log(exist(wsBoard, 'ABCCED')); // => true
console.log(exist(wsBoard, 'SEE')); // => true
console.log(exist(wsBoard, 'ABCB')); // => false
答案 0 :(得分:2)
我相信尽管dfs
和dfs2
基于相同的想法dfs
有一个缺陷,但它只返回探索第一条路径的结果!
看看这个例子,我试图在董事会中找到FOO
,显然,这是第一列,但是你的实现返回false
var dirs = [
[0,1], // r
[1,0], // d
[0,-1], // u
[-1,0], // l
];
var board = [
['F','O','X'],
['O',' ',' '],
['O',' ',' ']
];
var exist = function(word) {
function dfs(r, c, i) {
// mark
board[r][c] = '#';
// goal
if (i === word.length-1) return true;
// loop and recurse each neighbor
for (var d of dirs) {
var nr = r + d[0];
var nc = c + d[1];
// bail early if neighbor does not meet conditions
if (nr < 0 || nc < 0 || nr >= board.length || nc >= board[0].length) continue; // neighbor is out of bounds
if (board[nr][nc] === '#') continue; // neighbor already visited
if (board[nr][nc] !== word[i+1]) continue; // neighbor does not meet goal
// recursion
var result = dfs(nr, nc, i+1);
// un-mark
board[r][c] = word[i];
return result;
}
}
for (var r = 0; r < board.length; r++) {
for (var c = 0; c < board[0].length; c++) {
if (board[r][c] === word[0]) {}
if (dfs(r, c, 0)) return true;
}
}
return false;
}
console.log(exist('FOO'))
问题是你的for
循环将始终返回第一次递归的结果,要修复它,让我们将result
移到循环之外,最初使它false
并使其采用一旦找到有效路径,值为true
。
var dirs = [
[0,1], // r
[1,0], // d
[0,-1], // u
[-1,0], // l
];
var board = [
['F','O','X'],
['O',' ',' '],
['O',' ',' ']
];
var exist = function(word) {
function dfs(r, c, i) {
// mark
board[r][c] = '#';
// goal
if (i === word.length-1) return true;
// assume that there's no valid path initially
var result = false
// loop and recurse each neighbor
for (var d of dirs) {
var nr = r + d[0];
var nc = c + d[1];
// bail early if neighbor does not meet conditions
if (nr < 0 || nc < 0 || nr >= board.length || nc >= board[0].length) continue; // neighbor is out of bounds
if (board[nr][nc] === '#') continue; // neighbor already visited
if (board[nr][nc] !== word[i+1]) continue; // neighbor does not meet goal
// recursion
result = result || dfs(nr, nc, i+1);
}
// un-mark
board[r][c] = word[i];
return result;
}
for (var r = 0; r < board.length; r++) {
for (var c = 0; c < board[0].length; c++) {
if (board[r][c] === word[0]) {}
if (dfs(r, c, 0)) return true;
}
}
return false;
}
console.log(exist('FOO'))
如果我们查看dfs2
,唯一的区别是for循环是打开的,例如。
var result = false;
for (var dir in dirs) {
// ...
result = result || dfs(nr, nc, i+1)
}
return result;
// becomes
var result = dfs2(...) || dfs2(...) || ...
我注意到的第一件事是,在涉及网格的大多数问题中,解决方案在递归后涉及“取消标记”。这是为什么?
在某些解决方案中,您实际上可能会改变您正在使用的对象,例如在另一个经典问题中找到一个单词的所有排列,您可以通过在发现一个排列后递归地改变单词来解决它。下一个递归调用将使用不同的状态(这是不需要的),此问题中的unmarking
概念被转换为将该单词转换为其先前状态的还原操作。
哪个是正确的,dfs()或dfs2()?
两者都是正确的(好的,在dfs
被修复之后),然而,dfs2
会递归到无效状态,例如在复杂性方面,这个额外的开销只是一个常数乘数,例如一个超出边界的单元或不属于该单词的单元。即使您想象从每个单元访问每个邻居,复杂性也是O(4 * # rows * # columns)