我们假设我们有以下玩具数据:
library(tidyverse)
data <- tibble(
subject = c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3),
id1 = c("a", "a", "b", "a", "a", "a", "b", "a", "a", "b"),
id2 = c("b", "c", "c", "b", "c", "d", "c", "b", "c", "c")
)
表示每个主题的网络关系。例如,数据中有三个独特的主题,第一个主题的网络可以表示为关系序列:
a -- b, a --c, b -- c
任务是计算每个网络的中心位置。使用for循环这很简单:
library(igraph)
# Get unique subjects
subjects_uniq <- unique(data$subject)
# Compute centrality of nodes for each graph
for (i in 1:length(subjects_uniq)) {
current_data <- data %>% filter(subject == i) %>% select(-subject)
current_graph <- current_data %>% graph_from_data_frame(directed = FALSE)
centrality <- eigen_centrality(current_graph)$vector
}
问题:我的数据集很大,所以我想知道如何避免显式的for
循环。我应该使用apply()
及其现代堂兄弟(map()
包中可能purrr
)吗?任何建议都非常受欢迎。
答案 0 :(得分:4)
以下是使用map
library(tidyverse)
library(igraph)
map(subjects_uniq, ~data %>%
filter(subject == .x) %>%
select(-subject) %>%
graph_from_data_frame(directed = FALSE) %>%
{eigen_centrality(.)$vector})
#[[1]]
#a b c
#1 1 1
#[[2]]
# a b c d
#1.0000000 0.8546377 0.8546377 0.4608111
#[[3]]
#a b c
#1 1 1