示例数据:
df1 <- structure(list(Name = structure(c(3L, 2L, 1L), .Label = c("Bob",
"Joe", "Mike"), class = "factor"), Location = structure(c(1L,
1L, 2L), .Label = c("CA", "WA"), class = "factor"), Title = structure(c(2L,
3L, 1L), .Label = c("CEO", "Manager", "VP"), class = "factor"),
Class = structure(c(1L, 2L, 2L), .Label = c("Class1", "Class2"
), class = "factor"), Month = c(1, 2, 3), Class.1 = structure(c(3L,
2L, 1L), .Label = c("Class1", "Class2", "Class4"), class = "factor"),
Month.1 = c(3, 3, 2), Objective = structure(1:3, .Label = c("Obj1",
"Obj2", "Obj3"), class = "factor"), Month.2 = c(2, 7, 7),
Category = c("x", "y", "z"), Objective.1 = structure(c(3L,
2L, 1L), .Label = c("Obj1", "Obj7", "Obj9"), class = "factor"),
Month.3 = c(4, 5, 5), Category2 = c("z", "r", "q")), .Names = c("Name",
"Location", "Title", "Class", "Month", "Class.1", "Month.1",
"Objective", "Month.2", "Category", "Objective.1", "Month.3",
"Category2"), class = "data.frame", row.names = c(NA, -3L))
Name Location Title Class Month Class.1 Month.1 Objective Month.2 Category Objective.1 Month.3 Category2
1 Mike CA Manager Class1 1 Class4 3 Obj1 2 x Obj9 4 z
2 Joe CA VP Class2 2 Class2 3 Obj2 7 y Obj7 5 r
3 Bob WA CEO Class2 3 Class1 2 Obj3 7 z Obj1 5 q
我想收集每个观察一行的表格:
Name Location Title Variable(Class/Objective) Value
我已经使用gather
,spread
等在堆栈上尝试了一些相似的示例,但我无法弄清楚如何保持Class-Month和Objective -Month团结在一起。
在我的真实数据集中,有100列,其中包含8个ID列。而不仅仅是Class-Month或Objective-Month对,列的前半部分是四个一组,后半部分是8个组。一组四个的例子是Class-Month-Cost -date。
Mike的示例输出:
Name Location Title Variable Value Value.2
1 Mike CA Manager Class1 1 <NA>
2 Mike CA Manager Class4 3 <NA>
3 Mike CA Manager Obj1 2 x
4 Mike CA Manager Obj9 4 z
答案 0 :(得分:2)
重复的值很好,但是您需要指定哪些组合在一起(在示例中,&#34; Class&#34;&#34; Objective&#34;)以获得OP&#39输出:
library(data.table)
melt(setDT(df1),
meas = patterns("Class|Objective", "Month", "Category")
)[order(Name)]
Name Location Title variable value1 value2 value3
1: Bob WA CEO 1 Class2 3 z
2: Bob WA CEO 2 Class1 2 q
3: Bob WA CEO 3 Obj3 7 NA
4: Bob WA CEO 4 Obj1 5 NA
5: Joe CA VP 1 Class2 2 y
6: Joe CA VP 2 Class2 3 r
7: Joe CA VP 3 Obj2 7 NA
8: Joe CA VP 4 Obj7 5 NA
9: Mike CA Manager 1 Class1 1 x
10: Mike CA Manager 2 Class4 3 z
11: Mike CA Manager 3 Obj1 2 NA
12: Mike CA Manager 4 Obj9 4 NA
如果您具有相同的重复列名称或使用check.names=TRUE
消除歧义,那将无关紧要,因为patterns
只匹配名称中的模式。有关如何根据需要指定模式的详细信息,请参阅?regex
。
melt
的其他参数(参见?melt.data.table
)可用于为结果中的列提供自定义名称(而不是&#34; value1&#34;,&#34; value2&# 34;,...)。