执行与熊猫ffill相反的操作

时间:2017-09-28 22:54:48

标签: python pandas dataframe

假设我有以下DataFrame:

df = pd.DataFrame({'player': ['LBJ', 'LBJ', 'LBJ', 'Kyrie', 'Kyrie', 'LBJ', 'LBJ'],
                   'points': [25, 32, 26, 21, 29, 21, 35]})

如何执行与ffill相反的操作,以便我可以获得以下DataFrame:

df = pd.DataFrame({'player': ['LBJ', np.nan, np.nan, 'Kyrie', np.nan, 'LBJ', np.nan],
                   'points': [25, 32, 26, 21, 29, 21, 35]})

也就是说,我想用NaN直接填充重复的值。

这是我到目前为止所做的,但我希望有一个内置的熊猫方法或更好的方法:

for i, (index, row) in enumerate(df.iterrows()):
    if i == 0:
        continue
    go_back = 1
    while True:
        past_player = df.ix[i-go_back, 'player']
        if pd.isnull(past_player):
            go_back += 1
            continue
        if row['player'] == past_player:
            df.set_value(index, 'player', value=np.nan)
        break

2 个答案:

答案 0 :(得分:3)

ffinv = lambda s: s.mask(s == s.shift())
df.assign(player=ffinv(df.player))

  player  points
0    LBJ      25
1    NaN      32
2    NaN      26
3  Kyrie      21
4    NaN      29
5    LBJ      21
6    NaN      35

答案 1 :(得分:1)

可能不是最有效的解决方案,但可以使用itertools.groupbyitertools.chain

>>> df['player'] = list(itertools.chain.from_iterable([key] + [float('nan')]*(len(list(val))-1) 
                        for key, val in itertools.groupby(df['player'].tolist())))
>>> df
  player  points
0    LBJ      25
1    NaN      32
2    NaN      26
3  Kyrie      21
4    NaN      29
5    LBJ      21
6    NaN      35

更具体地说明了它的工作原理:

for key, val in itertools.groupby(df['player']):
    print([key] + [float('nan')]*(len(list(val))-1))

,并提供:

['LBJ', nan, nan]
['Kyrie', nan]
['LBJ', nan]

然后"链接"在一起。